Minimal lattice points in the Newton polyhedron and application to normal ideals
Let \(a_1,..., a_n\) be positive integers and let \(\Delta= NP(a_1,..., a_n)\) be the Newton polyhedron associated to these integers, that is, the convex hull in \(\mathbb{R}^{n}\) of the axial points that have \(a_i\) in the \(x_i\)-axis. We give some characterization of the minimal elements of \(\...
Збережено в:
Дата: | 2024 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2024
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2072 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-2072 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-20722024-04-21T17:47:57Z Minimal lattice points in the Newton polyhedron and application to normal ideals Al-Ayyoub, Ibrahim Newton polyhedron, integral closure, normal ideals, convex hull 13B22, 52B20 Let \(a_1,..., a_n\) be positive integers and let \(\Delta= NP(a_1,..., a_n)\) be the Newton polyhedron associated to these integers, that is, the convex hull in \(\mathbb{R}^{n}\) of the axial points that have \(a_i\) in the \(x_i\)-axis. We give some characterization of the minimal elements of \(\Delta\), and then use this characterization to give an alternative simpler proof of a main result of [7] on the normality of monomial ideals. Lugansk National Taras Shevchenko University 2024-04-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2072 10.12958/adm2072 Algebra and Discrete Mathematics; Vol 37, No 1 (2024) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2072/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2072/1058 Copyright (c) 2024 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
collection |
OJS |
language |
English |
topic |
Newton polyhedron integral closure normal ideals convex hull 13B22 52B20 |
spellingShingle |
Newton polyhedron integral closure normal ideals convex hull 13B22 52B20 Al-Ayyoub, Ibrahim Minimal lattice points in the Newton polyhedron and application to normal ideals |
topic_facet |
Newton polyhedron integral closure normal ideals convex hull 13B22 52B20 |
format |
Article |
author |
Al-Ayyoub, Ibrahim |
author_facet |
Al-Ayyoub, Ibrahim |
author_sort |
Al-Ayyoub, Ibrahim |
title |
Minimal lattice points in the Newton polyhedron and application to normal ideals |
title_short |
Minimal lattice points in the Newton polyhedron and application to normal ideals |
title_full |
Minimal lattice points in the Newton polyhedron and application to normal ideals |
title_fullStr |
Minimal lattice points in the Newton polyhedron and application to normal ideals |
title_full_unstemmed |
Minimal lattice points in the Newton polyhedron and application to normal ideals |
title_sort |
minimal lattice points in the newton polyhedron and application to normal ideals |
description |
Let \(a_1,..., a_n\) be positive integers and let \(\Delta= NP(a_1,..., a_n)\) be the Newton polyhedron associated to these integers, that is, the convex hull in \(\mathbb{R}^{n}\) of the axial points that have \(a_i\) in the \(x_i\)-axis. We give some characterization of the minimal elements of \(\Delta\), and then use this characterization to give an alternative simpler proof of a main result of [7] on the normality of monomial ideals. |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2024 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2072 |
work_keys_str_mv |
AT alayyoubibrahim minimallatticepointsinthenewtonpolyhedronandapplicationtonormalideals |
first_indexed |
2024-04-21T19:20:17Z |
last_indexed |
2024-04-21T19:20:17Z |
_version_ |
1803076170701340672 |