An extension of the essential graph of a ring

Let \(A\) be a commutative ring with non-zero identity, and \(E(A)=\{p\in A | ann_A(pq)\leq_e A, ~\mbox { for some } ~q\in A^* \}\) . The extended essential graph, denoted by \(E_gG(A)\) is a graph with the vertex set \(E(A)^*=E(A)\setminus\{0\}\). Two distinct vertices \(r, s\in E(A)^*\) are adjace...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2024
Автори: Ali, Asma, Ahmad, Bakhtiyar
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2024
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2120
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-2120
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-21202024-04-21T17:47:57Z An extension of the essential graph of a ring Ali, Asma Ahmad, Bakhtiyar zero-divisor graph, essential graph, reduced ring 13A15; 05C99; 05C25. Let \(A\) be a commutative ring with non-zero identity, and \(E(A)=\{p\in A | ann_A(pq)\leq_e A, ~\mbox { for some } ~q\in A^* \}\) . The extended essential graph, denoted by \(E_gG(A)\) is a graph with the vertex set \(E(A)^*=E(A)\setminus\{0\}\). Two distinct vertices \(r, s\in E(A)^*\) are adjacent if and only if \(ann_A(rs)\leq_e A\). In this paper, we prove that \(E_gG(A)\) is connected with \(diam(E_gG(A))\leq 3\) and if \(E_gG(A)\) has a cycle, then \(gr(E_gG(A))\leq 4\). Furthermore, we establish that if \(A\) is an Artinian commutative ring, then \(\omega (E_gG(A))=\chi (E_gG(A))=|N(A)^*|+ |Max(A)|\). Lugansk National Taras Shevchenko University 2024-04-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2120 10.12958/adm2120 Algebra and Discrete Mathematics; Vol 37, No 1 (2024) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2120/pdf Copyright (c) 2024 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2024-04-21T17:47:57Z
collection OJS
language English
topic zero-divisor graph
essential graph
reduced ring
13A15
05C99
05C25.
spellingShingle zero-divisor graph
essential graph
reduced ring
13A15
05C99
05C25.
Ali, Asma
Ahmad, Bakhtiyar
An extension of the essential graph of a ring
topic_facet zero-divisor graph
essential graph
reduced ring
13A15
05C99
05C25.
format Article
author Ali, Asma
Ahmad, Bakhtiyar
author_facet Ali, Asma
Ahmad, Bakhtiyar
author_sort Ali, Asma
title An extension of the essential graph of a ring
title_short An extension of the essential graph of a ring
title_full An extension of the essential graph of a ring
title_fullStr An extension of the essential graph of a ring
title_full_unstemmed An extension of the essential graph of a ring
title_sort extension of the essential graph of a ring
description Let \(A\) be a commutative ring with non-zero identity, and \(E(A)=\{p\in A | ann_A(pq)\leq_e A, ~\mbox { for some } ~q\in A^* \}\) . The extended essential graph, denoted by \(E_gG(A)\) is a graph with the vertex set \(E(A)^*=E(A)\setminus\{0\}\). Two distinct vertices \(r, s\in E(A)^*\) are adjacent if and only if \(ann_A(rs)\leq_e A\). In this paper, we prove that \(E_gG(A)\) is connected with \(diam(E_gG(A))\leq 3\) and if \(E_gG(A)\) has a cycle, then \(gr(E_gG(A))\leq 4\). Furthermore, we establish that if \(A\) is an Artinian commutative ring, then \(\omega (E_gG(A))=\chi (E_gG(A))=|N(A)^*|+ |Max(A)|\).
publisher Lugansk National Taras Shevchenko University
publishDate 2024
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2120
work_keys_str_mv AT aliasma anextensionoftheessentialgraphofaring
AT ahmadbakhtiyar anextensionoftheessentialgraphofaring
AT aliasma extensionoftheessentialgraphofaring
AT ahmadbakhtiyar extensionoftheessentialgraphofaring
first_indexed 2025-07-17T10:35:19Z
last_indexed 2025-07-17T10:35:19Z
_version_ 1837890032388538369