On exponentiation, \(p\)-automata and HNN extensions of free abelian groups

For every prime \(p\) it is shown that a wide class of HNN extensions of free abelian groups admits faithful representation by finite \(p\)-automata.

Saved in:
Bibliographic Details
Date:2023
Main Authors: Oliynyk, A., Prokhorchuk, V.
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2023
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2132
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-2132
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-21322023-10-30T03:22:13Z On exponentiation, \(p\)-automata and HNN extensions of free abelian groups Oliynyk, A. Prokhorchuk, V. wreath product, exponentiation, rooted tree, automorphism of rooted tree, finite automaton, automaton group, HNN extension 20E08, 20E22, 20E26 For every prime \(p\) it is shown that a wide class of HNN extensions of free abelian groups admits faithful representation by finite \(p\)-automata. Lugansk National Taras Shevchenko University 2023-10-12 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2132 10.12958/adm2132 Algebra and Discrete Mathematics; Vol 35, No 2 (2023) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2132/pdf Copyright (c) 2023 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2023-10-30T03:22:13Z
collection OJS
language English
topic wreath product
exponentiation
rooted tree
automorphism of rooted tree
finite automaton
automaton group
HNN extension
20E08
20E22
20E26
spellingShingle wreath product
exponentiation
rooted tree
automorphism of rooted tree
finite automaton
automaton group
HNN extension
20E08
20E22
20E26
Oliynyk, A.
Prokhorchuk, V.
On exponentiation, \(p\)-automata and HNN extensions of free abelian groups
topic_facet wreath product
exponentiation
rooted tree
automorphism of rooted tree
finite automaton
automaton group
HNN extension
20E08
20E22
20E26
format Article
author Oliynyk, A.
Prokhorchuk, V.
author_facet Oliynyk, A.
Prokhorchuk, V.
author_sort Oliynyk, A.
title On exponentiation, \(p\)-automata and HNN extensions of free abelian groups
title_short On exponentiation, \(p\)-automata and HNN extensions of free abelian groups
title_full On exponentiation, \(p\)-automata and HNN extensions of free abelian groups
title_fullStr On exponentiation, \(p\)-automata and HNN extensions of free abelian groups
title_full_unstemmed On exponentiation, \(p\)-automata and HNN extensions of free abelian groups
title_sort on exponentiation, \(p\)-automata and hnn extensions of free abelian groups
description For every prime \(p\) it is shown that a wide class of HNN extensions of free abelian groups admits faithful representation by finite \(p\)-automata.
publisher Lugansk National Taras Shevchenko University
publishDate 2023
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2132
work_keys_str_mv AT oliynyka onexponentiationpautomataandhnnextensionsoffreeabeliangroups
AT prokhorchukv onexponentiationpautomataandhnnextensionsoffreeabeliangroups
first_indexed 2025-07-17T10:32:31Z
last_indexed 2025-07-17T10:32:31Z
_version_ 1837889855467552768