Structure of relatively free \(n\)-tuple semigroups

An \(n\)-tuple semigroup is an algebra defined on a set with \(n\) binary associative operations. This notion was considered by Koreshkov in the context of the theory of \(n\)-tuple algebras of associative type. The \(n > 1\) pairwise interassociative semigroups give rise to an \(n\)-tuple se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2023
1. Verfasser: Zhuchok, A. V.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2023
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2173
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:An \(n\)-tuple semigroup is an algebra defined on a set with \(n\) binary associative operations. This notion was considered by Koreshkov in the context of the theory of \(n\)-tuple algebras of associative type. The \(n > 1\) pairwise interassociative semigroups give rise to an \(n\)-tuple semigroup. This paper is a survey of recent developments in the study of free objects in the variety of \(n\)-tuple semigroups. We present the constructions of the free \(n\)-tuple semigroup, the free commutative \(n\)-tuple semigroup, the free rectangular \(n\)-tuple semigroup, the free left (right) \(k\)-nilpotent \(n\)-tuple  semigroup, the free \(k\)-nilpotent \(n\)-tuple semigroup, and the free weakly \(k\)-nilpotent \(n\)-tuple semigroup. Some of these results can be applied to constructing relatively free cubical trialgebras and doppelalgebras.