Structure of relatively free \(n\)-tuple semigroups
An \(n\)-tuple semigroup is an algebra defined on a set with \(n\) binary associative operations. This notion was considered by Koreshkov in the context of the theory of \(n\)-tuple algebras of associative type. The \(n > 1\) pairwise interassociative semigroups give rise to an \(n\)-tuple se...
Gespeichert in:
Datum: | 2023 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Lugansk National Taras Shevchenko University
2023
|
Schlagworte: | |
Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2173 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsZusammenfassung: | An \(n\)-tuple semigroup is an algebra defined on a set with \(n\) binary associative operations. This notion was considered by Koreshkov in the context of the theory of \(n\)-tuple algebras of associative type. The \(n > 1\) pairwise interassociative semigroups give rise to an \(n\)-tuple semigroup. This paper is a survey of recent developments in the study of free objects in the variety of \(n\)-tuple semigroups. We present the constructions of the free \(n\)-tuple semigroup, the free commutative \(n\)-tuple semigroup, the free rectangular \(n\)-tuple semigroup, the free left (right) \(k\)-nilpotent \(n\)-tuple semigroup, the free \(k\)-nilpotent \(n\)-tuple semigroup, and the free weakly \(k\)-nilpotent \(n\)-tuple semigroup. Some of these results can be applied to constructing relatively free cubical trialgebras and doppelalgebras. |
---|