Structure of relatively free \(n\)-tuple semigroups

An \(n\)-tuple semigroup is an algebra defined on a set with \(n\) binary associative operations. This notion was considered by Koreshkov in the context of the theory of \(n\)-tuple algebras of associative type. The \(n > 1\) pairwise interassociative semigroups give rise to an \(n\)-tuple se...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2023
Автор: Zhuchok, A. V.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2023
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2173
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-2173
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-21732023-12-11T16:21:07Z Structure of relatively free \(n\)-tuple semigroups Zhuchok, A. V. \(n\)-tuple semigroup, free \(n\)-tuple semigroup, relatively free \(n\)-tuple semigroup, semigroup 08B20, 20M10, 20M50, 17A30, 17D99 An \(n\)-tuple semigroup is an algebra defined on a set with \(n\) binary associative operations. This notion was considered by Koreshkov in the context of the theory of \(n\)-tuple algebras of associative type. The \(n > 1\) pairwise interassociative semigroups give rise to an \(n\)-tuple semigroup. This paper is a survey of recent developments in the study of free objects in the variety of \(n\)-tuple semigroups. We present the constructions of the free \(n\)-tuple semigroup, the free commutative \(n\)-tuple semigroup, the free rectangular \(n\)-tuple semigroup, the free left (right) \(k\)-nilpotent \(n\)-tuple  semigroup, the free \(k\)-nilpotent \(n\)-tuple semigroup, and the free weakly \(k\)-nilpotent \(n\)-tuple semigroup. Some of these results can be applied to constructing relatively free cubical trialgebras and doppelalgebras.  Lugansk National Taras Shevchenko University 2023-12-11 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2173 10.12958/adm2173 Algebra and Discrete Mathematics; Vol 36, No 1 (2023) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2173/pdf Copyright (c) 2023 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic \(n\)-tuple semigroup
free \(n\)-tuple semigroup
relatively free \(n\)-tuple semigroup
semigroup
08B20
20M10
20M50
17A30
17D99
spellingShingle \(n\)-tuple semigroup
free \(n\)-tuple semigroup
relatively free \(n\)-tuple semigroup
semigroup
08B20
20M10
20M50
17A30
17D99
Zhuchok, A. V.
Structure of relatively free \(n\)-tuple semigroups
topic_facet \(n\)-tuple semigroup
free \(n\)-tuple semigroup
relatively free \(n\)-tuple semigroup
semigroup
08B20
20M10
20M50
17A30
17D99
format Article
author Zhuchok, A. V.
author_facet Zhuchok, A. V.
author_sort Zhuchok, A. V.
title Structure of relatively free \(n\)-tuple semigroups
title_short Structure of relatively free \(n\)-tuple semigroups
title_full Structure of relatively free \(n\)-tuple semigroups
title_fullStr Structure of relatively free \(n\)-tuple semigroups
title_full_unstemmed Structure of relatively free \(n\)-tuple semigroups
title_sort structure of relatively free \(n\)-tuple semigroups
description An \(n\)-tuple semigroup is an algebra defined on a set with \(n\) binary associative operations. This notion was considered by Koreshkov in the context of the theory of \(n\)-tuple algebras of associative type. The \(n > 1\) pairwise interassociative semigroups give rise to an \(n\)-tuple semigroup. This paper is a survey of recent developments in the study of free objects in the variety of \(n\)-tuple semigroups. We present the constructions of the free \(n\)-tuple semigroup, the free commutative \(n\)-tuple semigroup, the free rectangular \(n\)-tuple semigroup, the free left (right) \(k\)-nilpotent \(n\)-tuple  semigroup, the free \(k\)-nilpotent \(n\)-tuple semigroup, and the free weakly \(k\)-nilpotent \(n\)-tuple semigroup. Some of these results can be applied to constructing relatively free cubical trialgebras and doppelalgebras. 
publisher Lugansk National Taras Shevchenko University
publishDate 2023
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2173
work_keys_str_mv AT zhuchokav structureofrelativelyfreentuplesemigroups
first_indexed 2024-04-12T06:27:39Z
last_indexed 2024-04-12T06:27:39Z
_version_ 1796109248873103360