Structure of relatively free \(n\)-tuple semigroups
An \(n\)-tuple semigroup is an algebra defined on a set with \(n\) binary associative operations. This notion was considered by Koreshkov in the context of the theory of \(n\)-tuple algebras of associative type. The \(n > 1\) pairwise interassociative semigroups give rise to an \(n\)-tuple se...
Збережено в:
Дата: | 2023 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2023
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2173 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-2173 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-21732023-12-11T16:21:07Z Structure of relatively free \(n\)-tuple semigroups Zhuchok, A. V. \(n\)-tuple semigroup, free \(n\)-tuple semigroup, relatively free \(n\)-tuple semigroup, semigroup 08B20, 20M10, 20M50, 17A30, 17D99 An \(n\)-tuple semigroup is an algebra defined on a set with \(n\) binary associative operations. This notion was considered by Koreshkov in the context of the theory of \(n\)-tuple algebras of associative type. The \(n > 1\) pairwise interassociative semigroups give rise to an \(n\)-tuple semigroup. This paper is a survey of recent developments in the study of free objects in the variety of \(n\)-tuple semigroups. We present the constructions of the free \(n\)-tuple semigroup, the free commutative \(n\)-tuple semigroup, the free rectangular \(n\)-tuple semigroup, the free left (right) \(k\)-nilpotent \(n\)-tuple semigroup, the free \(k\)-nilpotent \(n\)-tuple semigroup, and the free weakly \(k\)-nilpotent \(n\)-tuple semigroup. Some of these results can be applied to constructing relatively free cubical trialgebras and doppelalgebras. Lugansk National Taras Shevchenko University 2023-12-11 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2173 10.12958/adm2173 Algebra and Discrete Mathematics; Vol 36, No 1 (2023) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2173/pdf Copyright (c) 2023 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
collection |
OJS |
language |
English |
topic |
\(n\)-tuple semigroup free \(n\)-tuple semigroup relatively free \(n\)-tuple semigroup semigroup 08B20 20M10 20M50 17A30 17D99 |
spellingShingle |
\(n\)-tuple semigroup free \(n\)-tuple semigroup relatively free \(n\)-tuple semigroup semigroup 08B20 20M10 20M50 17A30 17D99 Zhuchok, A. V. Structure of relatively free \(n\)-tuple semigroups |
topic_facet |
\(n\)-tuple semigroup free \(n\)-tuple semigroup relatively free \(n\)-tuple semigroup semigroup 08B20 20M10 20M50 17A30 17D99 |
format |
Article |
author |
Zhuchok, A. V. |
author_facet |
Zhuchok, A. V. |
author_sort |
Zhuchok, A. V. |
title |
Structure of relatively free \(n\)-tuple semigroups |
title_short |
Structure of relatively free \(n\)-tuple semigroups |
title_full |
Structure of relatively free \(n\)-tuple semigroups |
title_fullStr |
Structure of relatively free \(n\)-tuple semigroups |
title_full_unstemmed |
Structure of relatively free \(n\)-tuple semigroups |
title_sort |
structure of relatively free \(n\)-tuple semigroups |
description |
An \(n\)-tuple semigroup is an algebra defined on a set with \(n\) binary associative operations. This notion was considered by Koreshkov in the context of the theory of \(n\)-tuple algebras of associative type. The \(n > 1\) pairwise interassociative semigroups give rise to an \(n\)-tuple semigroup. This paper is a survey of recent developments in the study of free objects in the variety of \(n\)-tuple semigroups. We present the constructions of the free \(n\)-tuple semigroup, the free commutative \(n\)-tuple semigroup, the free rectangular \(n\)-tuple semigroup, the free left (right) \(k\)-nilpotent \(n\)-tuple semigroup, the free \(k\)-nilpotent \(n\)-tuple semigroup, and the free weakly \(k\)-nilpotent \(n\)-tuple semigroup. Some of these results can be applied to constructing relatively free cubical trialgebras and doppelalgebras. |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2023 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2173 |
work_keys_str_mv |
AT zhuchokav structureofrelativelyfreentuplesemigroups |
first_indexed |
2024-04-12T06:27:39Z |
last_indexed |
2024-04-12T06:27:39Z |
_version_ |
1796109248873103360 |