Certain invariants of generic matrix algebras

Let \(K\) be a field of characteristic zero, \(W\) be the associative unital algebra generated by two generic traceless matrices \(X,\) \(Y.\) We also handle the Lie subalgebra \(L\) of the algebra \(W\) consisting of its Lie elements. Consider the subgroup \(G=\langle e_{21}-e_{12}\rangle\) of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2024
Hauptverfasser: Öğüşlü, Nazar Ş., Fındık, Şehmus
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2024
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2195
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:Let \(K\) be a field of characteristic zero, \(W\) be the associative unital algebra generated by two generic traceless matrices \(X,\) \(Y.\) We also handle the Lie subalgebra \(L\) of the algebra \(W\) consisting of its Lie elements. Consider the subgroup \(G=\langle e_{21}-e_{12}\rangle\) of the special linear group \(SL_2(K)\) of order 4. In this study, we give free generators of the algebras \(W^G\) and \(L^G\) of invariants of the group \(G\) as a \(C(W)^G\)-module.