Certain invariants of generic matrix algebras
Let \(K\) be a field of characteristic zero, \(W\) be the associative unital algebra generated by two generic traceless matrices \(X,\) \(Y.\) We also handle the Lie subalgebra \(L\) of the algebra \(W\) consisting of its Lie elements. Consider the subgroup \(G=\langle e_{21}-e_{12}\rangle\) of the...
Gespeichert in:
Datum: | 2024 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Lugansk National Taras Shevchenko University
2024
|
Schlagworte: | |
Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2195 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsZusammenfassung: | Let \(K\) be a field of characteristic zero, \(W\) be the associative unital algebra generated by two generic traceless matrices \(X,\) \(Y.\) We also handle the Lie subalgebra \(L\) of the algebra \(W\) consisting of its Lie elements. Consider the subgroup \(G=\langle e_{21}-e_{12}\rangle\) of the special linear group \(SL_2(K)\) of order 4. In this study, we give free generators of the algebras \(W^G\) and \(L^G\) of invariants of the group \(G\) as a \(C(W)^G\)-module. |
---|