Anti-tori in quaternionic lattices over \(\mathbb{F}_q(t)\)
An anti-torus in a CAT(0) group is a subgroup \(\langle a,b\rangle\), where \(a\) and \(b\) do not have commuting powers. We study anti-tori in quaternionic lattices \(\Gamma_\tau\) over the field \(\mathbb{F}_q(t)\) introduced by Stix-Vdovina (2017). We determine when every pair of generators of \(...
Збережено в:
Дата: | 2024 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2024
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2217 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete MathematicsРезюме: | An anti-torus in a CAT(0) group is a subgroup \(\langle a,b\rangle\), where \(a\) and \(b\) do not have commuting powers. We study anti-tori in quaternionic lattices \(\Gamma_\tau\) over the field \(\mathbb{F}_q(t)\) introduced by Stix-Vdovina (2017). We determine when every pair of generators of \(\Gamma_\tau\) generates an anti-torus, and establish the existence of \(a,b\in\Gamma_\tau\) such that the subgroup \(\langle a^{p^n},b^{p^n}\rangle\) is not abelian and not free for all \(n\geq 0\). Explicit examples of matrices \(a,b\in SL_3(\mathbb{F}_q(t))\) with this property are given. |
---|