Anti-tori in quaternionic lattices over \(\mathbb{F}_q(t)\)

An anti-torus in a CAT(0) group is a subgroup \(\langle a,b\rangle\), where \(a\) and \(b\) do not have commuting powers. We study anti-tori in quaternionic lattices \(\Gamma_\tau\) over the field \(\mathbb{F}_q(t)\) introduced by Stix-Vdovina (2017). We determine when every pair of generators of \(...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2024
Автори: Bondarenko, Ievgen, Bondarenko, Nataliia
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2024
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2217
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-2217
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-22172024-06-27T08:42:43Z Anti-tori in quaternionic lattices over \(\mathbb{F}_q(t)\) Bondarenko, Ievgen Bondarenko, Nataliia anti-torus, quaternionic lattice, free subgroup 11R52, 20F65, 20F67 An anti-torus in a CAT(0) group is a subgroup \(\langle a,b\rangle\), where \(a\) and \(b\) do not have commuting powers. We study anti-tori in quaternionic lattices \(\Gamma_\tau\) over the field \(\mathbb{F}_q(t)\) introduced by Stix-Vdovina (2017). We determine when every pair of generators of \(\Gamma_\tau\) generates an anti-torus, and establish the existence of \(a,b\in\Gamma_\tau\) such that the subgroup \(\langle a^{p^n},b^{p^n}\rangle\) is not abelian and not free for all \(n\geq 0\). Explicit examples of matrices \(a,b\in SL_3(\mathbb{F}_q(t))\) with this property are given. Lugansk National Taras Shevchenko University 2024-06-27 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2217 10.12958/adm2217 Algebra and Discrete Mathematics; Vol 37, No 2 (2024) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2217/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2217/1155 Copyright (c) 2024 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2024-06-27T08:42:43Z
collection OJS
language English
topic anti-torus
quaternionic lattice
free subgroup
11R52
20F65
20F67
spellingShingle anti-torus
quaternionic lattice
free subgroup
11R52
20F65
20F67
Bondarenko, Ievgen
Bondarenko, Nataliia
Anti-tori in quaternionic lattices over \(\mathbb{F}_q(t)\)
topic_facet anti-torus
quaternionic lattice
free subgroup
11R52
20F65
20F67
format Article
author Bondarenko, Ievgen
Bondarenko, Nataliia
author_facet Bondarenko, Ievgen
Bondarenko, Nataliia
author_sort Bondarenko, Ievgen
title Anti-tori in quaternionic lattices over \(\mathbb{F}_q(t)\)
title_short Anti-tori in quaternionic lattices over \(\mathbb{F}_q(t)\)
title_full Anti-tori in quaternionic lattices over \(\mathbb{F}_q(t)\)
title_fullStr Anti-tori in quaternionic lattices over \(\mathbb{F}_q(t)\)
title_full_unstemmed Anti-tori in quaternionic lattices over \(\mathbb{F}_q(t)\)
title_sort anti-tori in quaternionic lattices over \(\mathbb{f}_q(t)\)
description An anti-torus in a CAT(0) group is a subgroup \(\langle a,b\rangle\), where \(a\) and \(b\) do not have commuting powers. We study anti-tori in quaternionic lattices \(\Gamma_\tau\) over the field \(\mathbb{F}_q(t)\) introduced by Stix-Vdovina (2017). We determine when every pair of generators of \(\Gamma_\tau\) generates an anti-torus, and establish the existence of \(a,b\in\Gamma_\tau\) such that the subgroup \(\langle a^{p^n},b^{p^n}\rangle\) is not abelian and not free for all \(n\geq 0\). Explicit examples of matrices \(a,b\in SL_3(\mathbb{F}_q(t))\) with this property are given.
publisher Lugansk National Taras Shevchenko University
publishDate 2024
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2217
work_keys_str_mv AT bondarenkoievgen antitoriinquaternioniclatticesovermathbbfqt
AT bondarenkonataliia antitoriinquaternioniclatticesovermathbbfqt
first_indexed 2024-06-28T04:03:55Z
last_indexed 2024-06-28T04:03:55Z
_version_ 1811048693082619904