On the structure of the algebras of derivations of some non-nilpotent Leibniz algebras
Let \(L\) be an algebra over a field \(F\) with the binary operations \(+\) and \([,]\). Then \(L\) is called a left Leibniz algebra if it satisfies the left Leibniz identity \([[a,b],c]=[a,[b,c]]-[b,[a,c]]\) for all \(a,b,c\in L\). We study the algebras of derivations of non-nilpotent Leibniz algeb...
Gespeichert in:
Datum: | 2024 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Lugansk National Taras Shevchenko University
2024
|
Schlagworte: | |
Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2227 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-2227 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-22272024-06-27T08:42:43Z On the structure of the algebras of derivations of some non-nilpotent Leibniz algebras Kurdachenko, Leonid A. Semko, Mykola M. Subbotin, Igor Ya. Leibniz algebra, non-nilpotent Leibniz algebra, dimension, derivation 17A32, 17A60, 17A99 Let \(L\) be an algebra over a field \(F\) with the binary operations \(+\) and \([,]\). Then \(L\) is called a left Leibniz algebra if it satisfies the left Leibniz identity \([[a,b],c]=[a,[b,c]]-[b,[a,c]]\) for all \(a,b,c\in L\). We study the algebras of derivations of non-nilpotent Leibniz algebras of low dimensions. Lugansk National Taras Shevchenko University 2024-06-27 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2227 10.12958/adm2227 Algebra and Discrete Mathematics; Vol 37, No 2 (2024) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2227/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2227/1159 Copyright (c) 2024 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
baseUrl_str |
|
datestamp_date |
2024-06-27T08:42:43Z |
collection |
OJS |
language |
English |
topic |
Leibniz algebra non-nilpotent Leibniz algebra dimension derivation 17A32 17A60 17A99 |
spellingShingle |
Leibniz algebra non-nilpotent Leibniz algebra dimension derivation 17A32 17A60 17A99 Kurdachenko, Leonid A. Semko, Mykola M. Subbotin, Igor Ya. On the structure of the algebras of derivations of some non-nilpotent Leibniz algebras |
topic_facet |
Leibniz algebra non-nilpotent Leibniz algebra dimension derivation 17A32 17A60 17A99 |
format |
Article |
author |
Kurdachenko, Leonid A. Semko, Mykola M. Subbotin, Igor Ya. |
author_facet |
Kurdachenko, Leonid A. Semko, Mykola M. Subbotin, Igor Ya. |
author_sort |
Kurdachenko, Leonid A. |
title |
On the structure of the algebras of derivations of some non-nilpotent Leibniz algebras |
title_short |
On the structure of the algebras of derivations of some non-nilpotent Leibniz algebras |
title_full |
On the structure of the algebras of derivations of some non-nilpotent Leibniz algebras |
title_fullStr |
On the structure of the algebras of derivations of some non-nilpotent Leibniz algebras |
title_full_unstemmed |
On the structure of the algebras of derivations of some non-nilpotent Leibniz algebras |
title_sort |
on the structure of the algebras of derivations of some non-nilpotent leibniz algebras |
description |
Let \(L\) be an algebra over a field \(F\) with the binary operations \(+\) and \([,]\). Then \(L\) is called a left Leibniz algebra if it satisfies the left Leibniz identity \([[a,b],c]=[a,[b,c]]-[b,[a,c]]\) for all \(a,b,c\in L\). We study the algebras of derivations of non-nilpotent Leibniz algebras of low dimensions. |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2024 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2227 |
work_keys_str_mv |
AT kurdachenkoleonida onthestructureofthealgebrasofderivationsofsomenonnilpotentleibnizalgebras AT semkomykolam onthestructureofthealgebrasofderivationsofsomenonnilpotentleibnizalgebras AT subbotinigorya onthestructureofthealgebrasofderivationsofsomenonnilpotentleibnizalgebras |
first_indexed |
2024-06-28T04:03:56Z |
last_indexed |
2024-06-28T04:03:56Z |
_version_ |
1811048693627879424 |