On the structure of the algebras of derivations of some non-nilpotent Leibniz algebras

Let \(L\) be an algebra over a field \(F\) with the binary operations \(+\) and \([,]\). Then \(L\) is called a left Leibniz algebra if it satisfies the left Leibniz identity \([[a,b],c]=[a,[b,c]]-[b,[a,c]]\) for all \(a,b,c\in L\). We study the algebras of derivations of non-nilpotent Leibniz algeb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2024
Hauptverfasser: Kurdachenko, Leonid A., Semko, Mykola M., Subbotin, Igor Ya.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2024
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2227
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-2227
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-22272024-06-27T08:42:43Z On the structure of the algebras of derivations of some non-nilpotent Leibniz algebras Kurdachenko, Leonid A. Semko, Mykola M. Subbotin, Igor Ya. Leibniz algebra, non-nilpotent Leibniz algebra, dimension, derivation 17A32, 17A60, 17A99 Let \(L\) be an algebra over a field \(F\) with the binary operations \(+\) and \([,]\). Then \(L\) is called a left Leibniz algebra if it satisfies the left Leibniz identity \([[a,b],c]=[a,[b,c]]-[b,[a,c]]\) for all \(a,b,c\in L\). We study the algebras of derivations of non-nilpotent Leibniz algebras of low dimensions. Lugansk National Taras Shevchenko University 2024-06-27 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2227 10.12958/adm2227 Algebra and Discrete Mathematics; Vol 37, No 2 (2024) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2227/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2227/1159 Copyright (c) 2024 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2024-06-27T08:42:43Z
collection OJS
language English
topic Leibniz algebra
non-nilpotent Leibniz algebra
dimension
derivation
17A32
17A60
17A99
spellingShingle Leibniz algebra
non-nilpotent Leibniz algebra
dimension
derivation
17A32
17A60
17A99
Kurdachenko, Leonid A.
Semko, Mykola M.
Subbotin, Igor Ya.
On the structure of the algebras of derivations of some non-nilpotent Leibniz algebras
topic_facet Leibniz algebra
non-nilpotent Leibniz algebra
dimension
derivation
17A32
17A60
17A99
format Article
author Kurdachenko, Leonid A.
Semko, Mykola M.
Subbotin, Igor Ya.
author_facet Kurdachenko, Leonid A.
Semko, Mykola M.
Subbotin, Igor Ya.
author_sort Kurdachenko, Leonid A.
title On the structure of the algebras of derivations of some non-nilpotent Leibniz algebras
title_short On the structure of the algebras of derivations of some non-nilpotent Leibniz algebras
title_full On the structure of the algebras of derivations of some non-nilpotent Leibniz algebras
title_fullStr On the structure of the algebras of derivations of some non-nilpotent Leibniz algebras
title_full_unstemmed On the structure of the algebras of derivations of some non-nilpotent Leibniz algebras
title_sort on the structure of the algebras of derivations of some non-nilpotent leibniz algebras
description Let \(L\) be an algebra over a field \(F\) with the binary operations \(+\) and \([,]\). Then \(L\) is called a left Leibniz algebra if it satisfies the left Leibniz identity \([[a,b],c]=[a,[b,c]]-[b,[a,c]]\) for all \(a,b,c\in L\). We study the algebras of derivations of non-nilpotent Leibniz algebras of low dimensions.
publisher Lugansk National Taras Shevchenko University
publishDate 2024
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2227
work_keys_str_mv AT kurdachenkoleonida onthestructureofthealgebrasofderivationsofsomenonnilpotentleibnizalgebras
AT semkomykolam onthestructureofthealgebrasofderivationsofsomenonnilpotentleibnizalgebras
AT subbotinigorya onthestructureofthealgebrasofderivationsofsomenonnilpotentleibnizalgebras
first_indexed 2024-06-28T04:03:56Z
last_indexed 2024-06-28T04:03:56Z
_version_ 1811048693627879424