On \(k\)-graceful labeling of pendant edge extension of complete bipartite graphs
For any two positive integers \(m,n\), we denote the graph \(K_{m,n}\odot K_1\) by \(G\). Ma Ke-Jie proposed a conjecture [9] that pendant edge extension of a complete bipartite graph is a \(k\)-graceful graph for \(k \ge 2\). In this paper we prove his conjecture for \(n\le m < n^2+\lfloor\f...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/224 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозиторії
Algebra and Discrete MathematicsРезюме: | For any two positive integers \(m,n\), we denote the graph \(K_{m,n}\odot K_1\) by \(G\). Ma Ke-Jie proposed a conjecture [9] that pendant edge extension of a complete bipartite graph is a \(k\)-graceful graph for \(k \ge 2\). In this paper we prove his conjecture for \(n\le m < n^2+\lfloor\frac{k}{n}\rfloor+ r\). |
---|