On \(k\)-graceful labeling of pendant edge extension of complete bipartite graphs

For any two positive integers \(m,n\), we denote the graph \(K_{m,n}\odot K_1\) by \(G\). Ma Ke-Jie proposed a conjecture [9] that pendant edge extension of a complete bipartite graph is a \(k\)-graceful graph for \(k \ge 2\). In this paper we prove his conjecture for \(n\le m < n^2+\lfloor\f...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Bhoumik, Soumya, Mitra, Sarbari
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/224
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозиторії

Algebra and Discrete Mathematics
Опис
Резюме:For any two positive integers \(m,n\), we denote the graph \(K_{m,n}\odot K_1\) by \(G\). Ma Ke-Jie proposed a conjecture [9] that pendant edge extension of a complete bipartite graph is a \(k\)-graceful graph for \(k \ge 2\). In this paper we prove his conjecture for \(n\le m < n^2+\lfloor\frac{k}{n}\rfloor+ r\).