On \(k\)-graceful labeling of pendant edge extension of complete bipartite graphs
For any two positive integers \(m,n\), we denote the graph \(K_{m,n}\odot K_1\) by \(G\). Ma Ke-Jie proposed a conjecture [9] that pendant edge extension of a complete bipartite graph is a \(k\)-graceful graph for \(k \ge 2\). In this paper we prove his conjecture for \(n\le m < n^2+\lfloor\f...
Gespeichert in:
| Datum: | 2018 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/224 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| Zusammenfassung: | For any two positive integers \(m,n\), we denote the graph \(K_{m,n}\odot K_1\) by \(G\). Ma Ke-Jie proposed a conjecture [9] that pendant edge extension of a complete bipartite graph is a \(k\)-graceful graph for \(k \ge 2\). In this paper we prove his conjecture for \(n\le m < n^2+\lfloor\frac{k}{n}\rfloor+ r\). |
|---|