Extended binary Golay codes by a group algebra
We study the construction of extended binary Golay codes with respect to the principle (left) ideals of the group algebra \(\mathbb{F}_2G\) of a group \(G\) of order 24 over a field of two elements \(\mathbb{F}_2\). All elements of \(v\in \mathbb{F}_2G\), which generate the principle ideals that def...
Збережено в:
Дата: | 2024 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2024
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2241 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-2241 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-22412024-09-23T09:29:11Z Extended binary Golay codes by a group algebra Bortos, Maria Yu. Tylyshchak, Alexander A. Khymynets, Myroslava V. group algebra, extended binary codes, Golay codes, self-dual codes, codes over fields 22D20, 94B05 We study the construction of extended binary Golay codes with respect to the principle (left) ideals of the group algebra \(\mathbb{F}_2G\) of a group \(G\) of order 24 over a field of two elements \(\mathbb{F}_2\). All elements of \(v\in \mathbb{F}_2G\), which generate the principle ideals that define extended binary Golay codes, have been found programmatically. Lugansk National Taras Shevchenko University 2024-09-23 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2241 10.12958/adm2241 Algebra and Discrete Mathematics; Vol 38, No 1 (2024) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2241/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2241/1168 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2241/1239 Copyright (c) 2024 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
baseUrl_str |
|
datestamp_date |
2024-09-23T09:29:11Z |
collection |
OJS |
language |
English |
topic |
group algebra extended binary codes Golay codes self-dual codes codes over fields 22D20 94B05 |
spellingShingle |
group algebra extended binary codes Golay codes self-dual codes codes over fields 22D20 94B05 Bortos, Maria Yu. Tylyshchak, Alexander A. Khymynets, Myroslava V. Extended binary Golay codes by a group algebra |
topic_facet |
group algebra extended binary codes Golay codes self-dual codes codes over fields 22D20 94B05 |
format |
Article |
author |
Bortos, Maria Yu. Tylyshchak, Alexander A. Khymynets, Myroslava V. |
author_facet |
Bortos, Maria Yu. Tylyshchak, Alexander A. Khymynets, Myroslava V. |
author_sort |
Bortos, Maria Yu. |
title |
Extended binary Golay codes by a group algebra |
title_short |
Extended binary Golay codes by a group algebra |
title_full |
Extended binary Golay codes by a group algebra |
title_fullStr |
Extended binary Golay codes by a group algebra |
title_full_unstemmed |
Extended binary Golay codes by a group algebra |
title_sort |
extended binary golay codes by a group algebra |
description |
We study the construction of extended binary Golay codes with respect to the principle (left) ideals of the group algebra \(\mathbb{F}_2G\) of a group \(G\) of order 24 over a field of two elements \(\mathbb{F}_2\). All elements of \(v\in \mathbb{F}_2G\), which generate the principle ideals that define extended binary Golay codes, have been found programmatically. |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2024 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2241 |
work_keys_str_mv |
AT bortosmariayu extendedbinarygolaycodesbyagroupalgebra AT tylyshchakalexandera extendedbinarygolaycodesbyagroupalgebra AT khymynetsmyroslavav extendedbinarygolaycodesbyagroupalgebra |
first_indexed |
2024-09-24T04:03:45Z |
last_indexed |
2024-09-24T04:03:45Z |
_version_ |
1811501763312746496 |