On a variation of \(\oplus\)-supplemented modules
Let \(R\) be a ring and \(M\) be an \(R\)-module. \(M\) is called \(\oplus_{ss}\)-supplemented if every submodule of \(M\) has a \(ss\)-supplement that is a direct summand of \(M\). In this paper, the basic properties and characterizations of \(\oplus_{ss}\)-supplemented modules are provided. In par...
Збережено в:
Дата: | 2024 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2024
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2273 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete MathematicsРезюме: | Let \(R\) be a ring and \(M\) be an \(R\)-module. \(M\) is called \(\oplus_{ss}\)-supplemented if every submodule of \(M\) has a \(ss\)-supplement that is a direct summand of \(M\). In this paper, the basic properties and characterizations of \(\oplus_{ss}\)-supplemented modules are provided. In particular, it is shown that \((1)\) if a module \(M\) is \(\oplus_{ss}\)-supplemented, then \(Rad(M)\) is semisimple and \(Soc(M)\unlhd M\); \((2)\) every direct sum of \(ss\)-lifting modules is \(\oplus_{ss}\)-supplemented; \((3)\) a commutative ring \(R\) is an artinian serial ring with semisimple radical if and only if every left \(R\)-module is \(\oplus_{ss}\)-supplemented. |
---|