On left-gyrotranslation groups of gyrogroups
A gyrogroup is an algebraic structure whose operation is, in general, non-associative that shares some common properties with groups. In this paper, we prove that every gyrogroup induces a permutation group, called the left-gyrotranslation group, that can be used to understand the algebraic structur...
Збережено в:
Дата: | 2024 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2024
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2299 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-2299 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-22992024-09-23T09:29:11Z On left-gyrotranslation groups of gyrogroups Suksumran, Teerapong Wattanapan, Jaturon permutation group, gyrogroup, left gyrotranslation, gyroautomorphism 20B99, 20N05 A gyrogroup is an algebraic structure whose operation is, in general, non-associative that shares some common properties with groups. In this paper, we prove that every gyrogroup induces a permutation group, called the left-gyrotranslation group, that can be used to understand the algebraic structure of the gyrogroup itself. We also show several connections between gyrogroups and their left-gyrotranslation groups and give a few related examples, especially the left-gyrotranslation group of the famous Möbius gyrogroup in the complex plane. Lugansk National Taras Shevchenko University Chiang Mai University 2024-09-23 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2299 10.12958/adm2299 Algebra and Discrete Mathematics; Vol 38, No 1 (2024) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2299/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2299/1210 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2299/1209 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2299/1241 Copyright (c) 2024 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
baseUrl_str |
|
datestamp_date |
2024-09-23T09:29:11Z |
collection |
OJS |
language |
English |
topic |
permutation group gyrogroup left gyrotranslation gyroautomorphism 20B99 20N05 |
spellingShingle |
permutation group gyrogroup left gyrotranslation gyroautomorphism 20B99 20N05 Suksumran, Teerapong Wattanapan, Jaturon On left-gyrotranslation groups of gyrogroups |
topic_facet |
permutation group gyrogroup left gyrotranslation gyroautomorphism 20B99 20N05 |
format |
Article |
author |
Suksumran, Teerapong Wattanapan, Jaturon |
author_facet |
Suksumran, Teerapong Wattanapan, Jaturon |
author_sort |
Suksumran, Teerapong |
title |
On left-gyrotranslation groups of gyrogroups |
title_short |
On left-gyrotranslation groups of gyrogroups |
title_full |
On left-gyrotranslation groups of gyrogroups |
title_fullStr |
On left-gyrotranslation groups of gyrogroups |
title_full_unstemmed |
On left-gyrotranslation groups of gyrogroups |
title_sort |
on left-gyrotranslation groups of gyrogroups |
description |
A gyrogroup is an algebraic structure whose operation is, in general, non-associative that shares some common properties with groups. In this paper, we prove that every gyrogroup induces a permutation group, called the left-gyrotranslation group, that can be used to understand the algebraic structure of the gyrogroup itself. We also show several connections between gyrogroups and their left-gyrotranslation groups and give a few related examples, especially the left-gyrotranslation group of the famous Möbius gyrogroup in the complex plane. |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2024 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2299 |
work_keys_str_mv |
AT suksumranteerapong onleftgyrotranslationgroupsofgyrogroups AT wattanapanjaturon onleftgyrotranslationgroupsofgyrogroups |
first_indexed |
2024-09-24T04:03:46Z |
last_indexed |
2024-09-24T04:03:46Z |
_version_ |
1811501763644096512 |