On the algebra of derivations of some Leibniz algebras

Let \(L\) be an algebra over a field \(F\) with the binary operations \(+\) and \([-,-]\). Then \(L\) is called a left Leibniz algebra if it satisfies the left Leibniz identity \([[a,b],c]=[a,[b,c]]-[b,[a,c]]\) for all \(a,b,c\in L\). We study algebras of derivations of some non–nilpotent Leibniz al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2024
Hauptverfasser: Kurdachenko, Leonid A., Semko, Mykola M., Subbotin, Igor Ya.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2024
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2316
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-2316
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-23162024-09-23T09:29:11Z On the algebra of derivations of some Leibniz algebras Kurdachenko, Leonid A. Semko, Mykola M. Subbotin, Igor Ya. Leibniz algebra, Lie algebra, derivation, endomorphism 17A32; 17A60; 17A99 Let \(L\) be an algebra over a field \(F\) with the binary operations \(+\) and \([-,-]\). Then \(L\) is called a left Leibniz algebra if it satisfies the left Leibniz identity \([[a,b],c]=[a,[b,c]]-[b,[a,c]]\) for all \(a,b,c\in L\). We study algebras of derivations of some non–nilpotent Leibniz algebras of low dimensions. Lugansk National Taras Shevchenko University 2024-09-23 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2316 10.12958/adm2316 Algebra and Discrete Mathematics; Vol 38, No 1 (2024) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2316/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2316/1244 Copyright (c) 2024 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2024-09-23T09:29:11Z
collection OJS
language English
topic Leibniz algebra
Lie algebra
derivation
endomorphism
17A32
17A60
17A99
spellingShingle Leibniz algebra
Lie algebra
derivation
endomorphism
17A32
17A60
17A99
Kurdachenko, Leonid A.
Semko, Mykola M.
Subbotin, Igor Ya.
On the algebra of derivations of some Leibniz algebras
topic_facet Leibniz algebra
Lie algebra
derivation
endomorphism
17A32
17A60
17A99
format Article
author Kurdachenko, Leonid A.
Semko, Mykola M.
Subbotin, Igor Ya.
author_facet Kurdachenko, Leonid A.
Semko, Mykola M.
Subbotin, Igor Ya.
author_sort Kurdachenko, Leonid A.
title On the algebra of derivations of some Leibniz algebras
title_short On the algebra of derivations of some Leibniz algebras
title_full On the algebra of derivations of some Leibniz algebras
title_fullStr On the algebra of derivations of some Leibniz algebras
title_full_unstemmed On the algebra of derivations of some Leibniz algebras
title_sort on the algebra of derivations of some leibniz algebras
description Let \(L\) be an algebra over a field \(F\) with the binary operations \(+\) and \([-,-]\). Then \(L\) is called a left Leibniz algebra if it satisfies the left Leibniz identity \([[a,b],c]=[a,[b,c]]-[b,[a,c]]\) for all \(a,b,c\in L\). We study algebras of derivations of some non–nilpotent Leibniz algebras of low dimensions.
publisher Lugansk National Taras Shevchenko University
publishDate 2024
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2316
work_keys_str_mv AT kurdachenkoleonida onthealgebraofderivationsofsomeleibnizalgebras
AT semkomykolam onthealgebraofderivationsofsomeleibnizalgebras
AT subbotinigorya onthealgebraofderivationsofsomeleibnizalgebras
first_indexed 2024-09-24T04:03:46Z
last_indexed 2024-09-24T04:03:46Z
_version_ 1820651918977925120