On the algebra of derivations of some Leibniz algebras
Let \(L\) be an algebra over a field \(F\) with the binary operations \(+\) and \([-,-]\). Then \(L\) is called a left Leibniz algebra if it satisfies the left Leibniz identity \([[a,b],c]=[a,[b,c]]-[b,[a,c]]\) for all \(a,b,c\in L\). We study algebras of derivations of some non–nilpotent Leibniz al...
Збережено в:
| Дата: | 2024 |
|---|---|
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2024
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2316 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| id |
oai:ojs.admjournal.luguniv.edu.ua:article-2316 |
|---|---|
| record_format |
ojs |
| spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-23162024-09-23T09:29:11Z On the algebra of derivations of some Leibniz algebras Kurdachenko, Leonid A. Semko, Mykola M. Subbotin, Igor Ya. Leibniz algebra, Lie algebra, derivation, endomorphism 17A32; 17A60; 17A99 Let \(L\) be an algebra over a field \(F\) with the binary operations \(+\) and \([-,-]\). Then \(L\) is called a left Leibniz algebra if it satisfies the left Leibniz identity \([[a,b],c]=[a,[b,c]]-[b,[a,c]]\) for all \(a,b,c\in L\). We study algebras of derivations of some non–nilpotent Leibniz algebras of low dimensions. Lugansk National Taras Shevchenko University 2024-09-23 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2316 10.12958/adm2316 Algebra and Discrete Mathematics; Vol 38, No 1 (2024) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2316/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2316/1244 Copyright (c) 2024 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2024-09-23T09:29:11Z |
| collection |
OJS |
| language |
English |
| topic |
Leibniz algebra Lie algebra derivation endomorphism 17A32 17A60 17A99 |
| spellingShingle |
Leibniz algebra Lie algebra derivation endomorphism 17A32 17A60 17A99 Kurdachenko, Leonid A. Semko, Mykola M. Subbotin, Igor Ya. On the algebra of derivations of some Leibniz algebras |
| topic_facet |
Leibniz algebra Lie algebra derivation endomorphism 17A32 17A60 17A99 |
| format |
Article |
| author |
Kurdachenko, Leonid A. Semko, Mykola M. Subbotin, Igor Ya. |
| author_facet |
Kurdachenko, Leonid A. Semko, Mykola M. Subbotin, Igor Ya. |
| author_sort |
Kurdachenko, Leonid A. |
| title |
On the algebra of derivations of some Leibniz algebras |
| title_short |
On the algebra of derivations of some Leibniz algebras |
| title_full |
On the algebra of derivations of some Leibniz algebras |
| title_fullStr |
On the algebra of derivations of some Leibniz algebras |
| title_full_unstemmed |
On the algebra of derivations of some Leibniz algebras |
| title_sort |
on the algebra of derivations of some leibniz algebras |
| description |
Let \(L\) be an algebra over a field \(F\) with the binary operations \(+\) and \([-,-]\). Then \(L\) is called a left Leibniz algebra if it satisfies the left Leibniz identity \([[a,b],c]=[a,[b,c]]-[b,[a,c]]\) for all \(a,b,c\in L\). We study algebras of derivations of some non–nilpotent Leibniz algebras of low dimensions. |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2024 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2316 |
| work_keys_str_mv |
AT kurdachenkoleonida onthealgebraofderivationsofsomeleibnizalgebras AT semkomykolam onthealgebraofderivationsofsomeleibnizalgebras AT subbotinigorya onthealgebraofderivationsofsomeleibnizalgebras |
| first_indexed |
2025-07-17T10:31:11Z |
| last_indexed |
2025-07-17T10:31:11Z |
| _version_ |
1837890134751576064 |