Extending properties of \(z\)-closed projection invariant submodules

In this article, we define a module \(M\) to be \(ZPG\) if and only if for each \(zp\)-submodule \(X\) of \(M\) there exists a direct summand \(D\) such that \(X\cap D\) is essential in both \(X\) and \(D\). We investigate structural properties of \(ZPG\) modules and locate the implications between...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2025
Автори: Yücel, Canan Celep, Ayvazoğlu, Yeşim
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2025
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2323
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:In this article, we define a module \(M\) to be \(ZPG\) if and only if for each \(zp\)-submodule \(X\) of \(M\) there exists a direct summand \(D\) such that \(X\cap D\) is essential in both \(X\) and \(D\). We investigate structural properties of \(ZPG\) modules and locate the implications between the other extending properties. Our focus is the behavior of the \(ZPG\) modules with respect to direct sums and direct summands. We obtain the property is closed under right essential overring and rational hull.