On the semigroup of monoid endomorphisms of the semigroup \(\mathscr{C}_{+}(a,b)\)

Let \(\mathscr{C}_{+}(a,b)\) be the submonoid of the bicyclic monoid which is studied in [8]. We describe monoid endomorphisms of the semigroup \(\mathscr{C}_{+}(a,b)\) which are generated by the family of all congruences of the bicyclic monoid and all injective monoid endomorphisms of \(\mathscr{C}...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2025
Автори: Gutik, Oleg, Penza, Sher-Ali
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2025
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2333
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:Let \(\mathscr{C}_{+}(a,b)\) be the submonoid of the bicyclic monoid which is studied in [8]. We describe monoid endomorphisms of the semigroup \(\mathscr{C}_{+}(a,b)\) which are generated by the family of all congruences of the bicyclic monoid and all injective monoid endomorphisms of \(\mathscr{C}_{+}(a,b)\).