On the semigroup of injective transformations with restricted range that equal gap and defect

Let \(X\) be an infinite set and \(I(X)\) the symmetric inverse semigroup on \(X\). Let \(A(X)=\{\alpha \in I(X):|X\setminus \mathrm{dom\;}\alpha|=|X\setminus X\alpha|\}\), it is known that \(A(X)\) is the largest factorizable subsemigroup of \(I(X)\). In this article, for any nonempty subset \(Y\)...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2025
Автор: Singha, Boorapa
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2025
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2335
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:Let \(X\) be an infinite set and \(I(X)\) the symmetric inverse semigroup on \(X\). Let \(A(X)=\{\alpha \in I(X):|X\setminus \mathrm{dom\;}\alpha|=|X\setminus X\alpha|\}\), it is known that \(A(X)\) is the largest factorizable subsemigroup of \(I(X)\). In this article, for any nonempty subset \(Y\) of \(X\), we consider the subsemigroup \(A(X, Y)\) of \(A(X)\) of all transformations with range contained in \(Y\). We give a complete description of Green's relations on \(A(X,Y)\). With respect to the natural partial order on a semigroup, we determine when two elements in \(A(X,Y)\) are related and find all the maximum, minimum, maximal, minimal, lower cover and upper cover elements. We also describe elements which are compatible and we investigate the greatest lower bound and the least upper bound of two elements in \(A(X,Y)\).