Fundamental theorem of \((A,\mathcal G,H)\)-comodules
Let \(k\) be a field, \(H\) a Hopf algebra with a bijective antipode, \(\mathcal G\) an \(H\)-comodule Lie algebra and \(A\) a commutative \(({\mathcal G},H)\)-comodule algebra. We assume that there is an \(H\)-colinear algebra map from \(H\) to \(A^{\mathcal G}\). We generalize the Fundamental Theo...
Збережено в:
| Дата: | 2025 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2025
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2345 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| id |
oai:ojs.admjournal.luguniv.edu.ua:article-2345 |
|---|---|
| record_format |
ojs |
| spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-23452025-10-27T20:24:52Z Fundamental theorem of \((A,\mathcal G,H)\)-comodules Guédénon, Thomas Lie algebra, module over a Lie algebra, Hopf algebra, Hopf module, \(H\)-comodule Lie algebra, \(({\mathcal G},H)\)-comodule algebra, \((A,{\mathcal G},H)\)-comodule Primary: 16T05. Secondary: 17B60 Let \(k\) be a field, \(H\) a Hopf algebra with a bijective antipode, \(\mathcal G\) an \(H\)-comodule Lie algebra and \(A\) a commutative \(({\mathcal G},H)\)-comodule algebra. We assume that there is an \(H\)-colinear algebra map from \(H\) to \(A^{\mathcal G}\). We generalize the Fundamental Theorem of \((A,H)\)-Hopf modules to \((A,{\mathcal G},H)\)-comodules, and we deduce relative projectivity in the category of \((A,{\mathcal G},H)\)-comodules. In many applications, \(A\) could be a commutative \(G\)-graded \(\mathcal G\)-module algebra, where \(G\) is an abelian group and \(\mathcal G\) is a \(G\)-graded Lie algebra; or a rational \(({\mathcal G},G)\)-module algebra, where \(G\) is an affine algebraic group and \(\mathcal G\) is a rational \(G\)-module Lie algebra. Lugansk National Taras Shevchenko University 2025-10-27 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2345 10.12958/adm2345 Algebra and Discrete Mathematics; Vol 40, No 1 (2025) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2345/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2345/1260 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2345/1269 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2345/1270 Copyright (c) 2025 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2025-10-27T20:24:52Z |
| collection |
OJS |
| language |
English |
| topic |
Lie algebra module over a Lie algebra Hopf algebra Hopf module \(H\)-comodule Lie algebra \(({\mathcal G},H)\)-comodule algebra \((A,{\mathcal G},H)\)-comodule Primary: 16T05. Secondary: 17B60 |
| spellingShingle |
Lie algebra module over a Lie algebra Hopf algebra Hopf module \(H\)-comodule Lie algebra \(({\mathcal G},H)\)-comodule algebra \((A,{\mathcal G},H)\)-comodule Primary: 16T05. Secondary: 17B60 Guédénon, Thomas Fundamental theorem of \((A,\mathcal G,H)\)-comodules |
| topic_facet |
Lie algebra module over a Lie algebra Hopf algebra Hopf module \(H\)-comodule Lie algebra \(({\mathcal G},H)\)-comodule algebra \((A,{\mathcal G},H)\)-comodule Primary: 16T05. Secondary: 17B60 |
| format |
Article |
| author |
Guédénon, Thomas |
| author_facet |
Guédénon, Thomas |
| author_sort |
Guédénon, Thomas |
| title |
Fundamental theorem of \((A,\mathcal G,H)\)-comodules |
| title_short |
Fundamental theorem of \((A,\mathcal G,H)\)-comodules |
| title_full |
Fundamental theorem of \((A,\mathcal G,H)\)-comodules |
| title_fullStr |
Fundamental theorem of \((A,\mathcal G,H)\)-comodules |
| title_full_unstemmed |
Fundamental theorem of \((A,\mathcal G,H)\)-comodules |
| title_sort |
fundamental theorem of \((a,\mathcal g,h)\)-comodules |
| description |
Let \(k\) be a field, \(H\) a Hopf algebra with a bijective antipode, \(\mathcal G\) an \(H\)-comodule Lie algebra and \(A\) a commutative \(({\mathcal G},H)\)-comodule algebra. We assume that there is an \(H\)-colinear algebra map from \(H\) to \(A^{\mathcal G}\). We generalize the Fundamental Theorem of \((A,H)\)-Hopf modules to \((A,{\mathcal G},H)\)-comodules, and we deduce relative projectivity in the category of \((A,{\mathcal G},H)\)-comodules. In many applications, \(A\) could be a commutative \(G\)-graded \(\mathcal G\)-module algebra, where \(G\) is an abelian group and \(\mathcal G\) is a \(G\)-graded Lie algebra; or a rational \(({\mathcal G},G)\)-module algebra, where \(G\) is an affine algebraic group and \(\mathcal G\) is a rational \(G\)-module Lie algebra. |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2025 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2345 |
| work_keys_str_mv |
AT guedenonthomas fundamentaltheoremofamathcalghcomodules |
| first_indexed |
2025-10-26T02:08:37Z |
| last_indexed |
2025-10-28T02:44:43Z |
| _version_ |
1848186845531209728 |