Fundamental theorem of \((A,\mathcal G,H)\)-comodules

Let \(k\) be a field, \(H\) a Hopf algebra with a bijective antipode, \(\mathcal G\) an \(H\)-comodule Lie algebra and \(A\) a commutative \(({\mathcal G},H)\)-comodule algebra. We assume that there is an \(H\)-colinear algebra map from \(H\) to \(A^{\mathcal G}\). We generalize the Fundamental Theo...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2025
Автор: Guédénon, Thomas
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2025
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2345
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-2345
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-23452025-10-27T20:24:52Z Fundamental theorem of \((A,\mathcal G,H)\)-comodules Guédénon, Thomas Lie algebra, module over a Lie algebra, Hopf algebra, Hopf module, \(H\)-comodule Lie algebra, \(({\mathcal G},H)\)-comodule algebra, \((A,{\mathcal G},H)\)-comodule Primary: 16T05. Secondary: 17B60 Let \(k\) be a field, \(H\) a Hopf algebra with a bijective antipode, \(\mathcal G\) an \(H\)-comodule Lie algebra and \(A\) a commutative \(({\mathcal G},H)\)-comodule algebra. We assume that there is an \(H\)-colinear algebra map from \(H\) to \(A^{\mathcal G}\). We generalize the Fundamental Theorem of \((A,H)\)-Hopf modules to \((A,{\mathcal G},H)\)-comodules, and we deduce relative projectivity in the category of \((A,{\mathcal G},H)\)-comodules. In many applications, \(A\) could be a commutative \(G\)-graded \(\mathcal G\)-module algebra, where \(G\) is an abelian group and \(\mathcal G\) is a \(G\)-graded Lie algebra;  or a rational \(({\mathcal G},G)\)-module algebra, where \(G\) is an affine algebraic group and \(\mathcal G\) is a rational \(G\)-module Lie algebra. Lugansk National Taras Shevchenko University 2025-10-27 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2345 10.12958/adm2345 Algebra and Discrete Mathematics; Vol 40, No 1 (2025) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2345/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2345/1260 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2345/1269 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2345/1270 Copyright (c) 2025 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2025-10-27T20:24:52Z
collection OJS
language English
topic Lie algebra
module over a Lie algebra
Hopf algebra
Hopf module
\(H\)-comodule Lie algebra
\(({\mathcal G},H)\)-comodule algebra
\((A,{\mathcal G},H)\)-comodule
Primary: 16T05. Secondary: 17B60
spellingShingle Lie algebra
module over a Lie algebra
Hopf algebra
Hopf module
\(H\)-comodule Lie algebra
\(({\mathcal G},H)\)-comodule algebra
\((A,{\mathcal G},H)\)-comodule
Primary: 16T05. Secondary: 17B60
Guédénon, Thomas
Fundamental theorem of \((A,\mathcal G,H)\)-comodules
topic_facet Lie algebra
module over a Lie algebra
Hopf algebra
Hopf module
\(H\)-comodule Lie algebra
\(({\mathcal G},H)\)-comodule algebra
\((A,{\mathcal G},H)\)-comodule
Primary: 16T05. Secondary: 17B60
format Article
author Guédénon, Thomas
author_facet Guédénon, Thomas
author_sort Guédénon, Thomas
title Fundamental theorem of \((A,\mathcal G,H)\)-comodules
title_short Fundamental theorem of \((A,\mathcal G,H)\)-comodules
title_full Fundamental theorem of \((A,\mathcal G,H)\)-comodules
title_fullStr Fundamental theorem of \((A,\mathcal G,H)\)-comodules
title_full_unstemmed Fundamental theorem of \((A,\mathcal G,H)\)-comodules
title_sort fundamental theorem of \((a,\mathcal g,h)\)-comodules
description Let \(k\) be a field, \(H\) a Hopf algebra with a bijective antipode, \(\mathcal G\) an \(H\)-comodule Lie algebra and \(A\) a commutative \(({\mathcal G},H)\)-comodule algebra. We assume that there is an \(H\)-colinear algebra map from \(H\) to \(A^{\mathcal G}\). We generalize the Fundamental Theorem of \((A,H)\)-Hopf modules to \((A,{\mathcal G},H)\)-comodules, and we deduce relative projectivity in the category of \((A,{\mathcal G},H)\)-comodules. In many applications, \(A\) could be a commutative \(G\)-graded \(\mathcal G\)-module algebra, where \(G\) is an abelian group and \(\mathcal G\) is a \(G\)-graded Lie algebra;  or a rational \(({\mathcal G},G)\)-module algebra, where \(G\) is an affine algebraic group and \(\mathcal G\) is a rational \(G\)-module Lie algebra.
publisher Lugansk National Taras Shevchenko University
publishDate 2025
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2345
work_keys_str_mv AT guedenonthomas fundamentaltheoremofamathcalghcomodules
first_indexed 2025-10-26T02:08:37Z
last_indexed 2025-10-28T02:44:43Z
_version_ 1848186845531209728