Fundamental theorem of \((A,\mathcal G,H)\)-comodules
Let \(k\) be a field, \(H\) a Hopf algebra with a bijective antipode, \(\mathcal G\) an \(H\)-comodule Lie algebra and \(A\) a commutative \(({\mathcal G},H)\)-comodule algebra. We assume that there is an \(H\)-colinear algebra map from \(H\) to \(A^{\mathcal G}\). We generalize the Fundamental Theo...
Saved in:
| Date: | 2025 |
|---|---|
| Main Author: | Guédénon, Thomas |
| Format: | Article |
| Language: | English |
| Published: |
Lugansk National Taras Shevchenko University
2025
|
| Subjects: | |
| Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2345 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsSimilar Items
-
Fundamental theorem of \((A,\mathcal G,H)\)-comodules
by: Guédénon, Thomas
Published: (2025) -
\((\mathcal{T}_{\textsf {Lie}})\)-Leibniz algebras and related properties
by: Tcheka, C., et al.
Published: (2024) -
\((\mathcal{T}_{\textsf {Lie}})\)-Leibniz algebras and related properties
by: Tcheka, C., et al.
Published: (2024) -
A note on simplicity of contact Lie algebras over \(\operatorname{GF}(2)\)
by: Zargeh, Chia
Published: (2018) -
On the algebra of derivations of some Leibniz algebras
by: Kurdachenko, Leonid A., et al.
Published: (2024)