2025-02-23T03:44:45-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22oai%3Aojs.admjournal.luguniv.edu.ua%3Aarticle-2350%22&qt=morelikethis&rows=5
2025-02-23T03:44:45-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22oai%3Aojs.admjournal.luguniv.edu.ua%3Aarticle-2350%22&qt=morelikethis&rows=5
2025-02-23T03:44:45-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T03:44:45-05:00 DEBUG: Deserialized SOLR response

Rings of differential operators on singular generalized multi-cusp algebras

The aim of the paper is to study the ring of differential operators \(\mathcal{D}(A(m))\) on the generalized multi-cusp algebra \(A(m)\) where \(m\in \mathbb{N}^n\) (of Krull dimension \(n\)). The algebra \(A(m)\) is singular apart from the single case when \(m=(1, \ldots , 1)\). In this case, the a...

Full description

Saved in:
Bibliographic Details
Main Authors: Bavula, Volodymyr V., Hakami, Khalil
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2025
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2350
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of the paper is to study the ring of differential operators \(\mathcal{D}(A(m))\) on the generalized multi-cusp algebra \(A(m)\) where \(m\in \mathbb{N}^n\) (of Krull dimension \(n\)). The algebra \(A(m)\) is singular apart from the single case when \(m=(1, \ldots , 1)\). In this case, the algebra \(A(m)\) is a polynomial algebra in \(n\) variables. So, the \(n\)'th Weyl algebra \(A_n=\mathcal{D}(A(1, \ldots , 1))\) is a member of the family of algebras \(\mathcal{D}(A(m))\). We prove that the algebra \(\mathcal{D}(A(m))\) is a central, simple, \(\mathbb{Z}^n\)-graded, finitely generated Noetherian domain of Gelfand-Kirillov dimension \(2n\). Explicit finite sets of generators and defining relations is given for the algebra \(\mathcal{D}(A(m))\). We prove that the Krull dimension and the global dimension of the algebra \(\mathcal{D}(A(m))\) is \(n\). An analogue of the Inequality of Bernstein is proven. In the case when \(n = 1\), simple \(\mathcal{D}(A(m))\)-modules are classified.