Branch actions and the structure lattice

J. S. Wilson proved in 1971 an isomorphism between the structural lattice associated to a group belonging to his second class of groups with every proper quotient finite and the Boolean algebra of clopen subsets of Cantor’s ternary set. In this paper we generalize this isomorphism to the class of br...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2025
Hauptverfasser: Fariña-Asategui, Jorge, Grigorchuk, Rostislav
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2025
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2351
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:J. S. Wilson proved in 1971 an isomorphism between the structural lattice associated to a group belonging to his second class of groups with every proper quotient finite and the Boolean algebra of clopen subsets of Cantor’s ternary set. In this paper we generalize this isomorphism to the class of branch groups. Moreover, we show that for every faithful branch action of a group \(G\) on a spherically homogeneous rooted tree \(T\) there is a canonical \(G\)-equivariant isomorphism between the Boolean algebra associated to the structure lattice of \(G\) and the Boolean algebra of clopen subsets of the boundary of \(T\) .