Exceptional hereditary curves and real curve orbifolds
In this paper, we elaborate the theory of exceptional hereditary curves over arbitrary fields. In particular, we study the category of equivariant coherent sheaves on a regular projective curve whose quotient curve has genus zero and prove existence of a tilting object in this case. We also establis...
Збережено в:
| Дата: | 2025 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2025
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2365 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| Резюме: | In this paper, we elaborate the theory of exceptional hereditary curves over arbitrary fields. In particular, we study the category of equivariant coherent sheaves on a regular projective curve whose quotient curve has genus zero and prove existence of a tilting object in this case. We also establish a link between wallpaper groups and real hereditary curves, providing details to an old observation made by Helmut Lenzing. |
|---|