On algebras that are sums of two subalgebras

We study an associative algebra \(A\) over an arbitrary field \(K\) that is a sum of two subalgebras \(B\) and \(C\) (i.e. \(A=B+C)\). Let \(\mathcal{M}\) be the class of algebras such that \(B, C\in \mathcal{M}\) implies \(A\in \mathcal{M}\). We prove, under some natural additional assumptions on \...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2025
Автор: Kępczyk, Marek
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2025
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2396
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-2396
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-23962025-10-27T20:24:52Z On algebras that are sums of two subalgebras Kępczyk, Marek rings with polynomial identities, left T-nilpotent rings, prime rings 16D25, 16R10, 16N40 We study an associative algebra \(A\) over an arbitrary field \(K\) that is a sum of two subalgebras \(B\) and \(C\) (i.e. \(A=B+C)\). Let \(\mathcal{M}\) be the class of algebras such that \(B, C\in \mathcal{M}\) implies \(A\in \mathcal{M}\). We prove, under some natural additional assumptions on \(\mathcal{M}\), that if \(B\) and \(C\) have ideals of finite codimension from \(\mathcal{M}\), then \(A\) has an ideal of finite codimension from \(\mathcal{M}\), too. In particular we show that if \(B\) and \(C\) have left T-nilpotent ideals (or nil \(PI\) ideals) of finite codimension, then \(A\) has a left T-nilpotent ideal (or nil \(PI\) ideal) of finite codimension. Lugansk National Taras Shevchenko University 2025-10-27 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2396 10.12958/adm2396 Algebra and Discrete Mathematics; Vol 40, No 1 (2025) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2396/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2396/1301 Copyright (c) 2025 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2025-10-27T20:24:52Z
collection OJS
language English
topic rings with polynomial identities
left T-nilpotent rings
prime rings
16D25
16R10
16N40
spellingShingle rings with polynomial identities
left T-nilpotent rings
prime rings
16D25
16R10
16N40
Kępczyk, Marek
On algebras that are sums of two subalgebras
topic_facet rings with polynomial identities
left T-nilpotent rings
prime rings
16D25
16R10
16N40
format Article
author Kępczyk, Marek
author_facet Kępczyk, Marek
author_sort Kępczyk, Marek
title On algebras that are sums of two subalgebras
title_short On algebras that are sums of two subalgebras
title_full On algebras that are sums of two subalgebras
title_fullStr On algebras that are sums of two subalgebras
title_full_unstemmed On algebras that are sums of two subalgebras
title_sort on algebras that are sums of two subalgebras
description We study an associative algebra \(A\) over an arbitrary field \(K\) that is a sum of two subalgebras \(B\) and \(C\) (i.e. \(A=B+C)\). Let \(\mathcal{M}\) be the class of algebras such that \(B, C\in \mathcal{M}\) implies \(A\in \mathcal{M}\). We prove, under some natural additional assumptions on \(\mathcal{M}\), that if \(B\) and \(C\) have ideals of finite codimension from \(\mathcal{M}\), then \(A\) has an ideal of finite codimension from \(\mathcal{M}\), too. In particular we show that if \(B\) and \(C\) have left T-nilpotent ideals (or nil \(PI\) ideals) of finite codimension, then \(A\) has a left T-nilpotent ideal (or nil \(PI\) ideal) of finite codimension.
publisher Lugansk National Taras Shevchenko University
publishDate 2025
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2396
work_keys_str_mv AT kepczykmarek onalgebrasthataresumsoftwosubalgebras
first_indexed 2025-10-26T02:08:37Z
last_indexed 2025-10-28T02:44:44Z
_version_ 1849545202377687040