Generalization of primal superideals
Let \(R\) be a commutative super-ring with unity \(1\not=0\). A proper superideal of \(R\) is a superideal \(I\) of \(R\) such that \(I\not=R\). Let \(\phi : \mathfrak{I}(R)\rightarrow\mathfrak{I}(R)\cup\{\emptyset\}\) be any function, where \(\mathfrak{I}(R)\) denotes the set of all proper superide...
Збережено в:
| Дата: | 2016 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2016
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/26 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| id |
oai:ojs.admjournal.luguniv.edu.ua:article-26 |
|---|---|
| record_format |
ojs |
| spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-262016-07-12T10:09:40Z Generalization of primal superideals Jaber, Ameer primal superideal, \(\phi\)-\(P\)-primal superideal, \(\phi\)-prime superideal 13A02, 16D25, 16W50 Let \(R\) be a commutative super-ring with unity \(1\not=0\). A proper superideal of \(R\) is a superideal \(I\) of \(R\) such that \(I\not=R\). Let \(\phi : \mathfrak{I}(R)\rightarrow\mathfrak{I}(R)\cup\{\emptyset\}\) be any function, where \(\mathfrak{I}(R)\) denotes the set of all proper superideals of \(R\). A homogeneous element \(a\in R\) is \(\phi\)-{\it prime} to \(I\) if \(ra\in I-\phi(I)\) where \(r\) is a homogeneous element in \(R\), then \(r\in I\). We denote by \(\nu_\phi(I)\) the set of all homogeneous elements in \(R\) that are not \(\phi\)-prime to \(I\). We define \(I\) to be \(\phi\)-\textit{primal} if the set \[P=\begin{cases}[(\nu_\phi(I))_0+(\nu_\phi(I))_1\cup\{0\}]+\phi(I) & :\quad {\rm if}\ \phi\not=\phi_\emptyset\\ (\nu_\phi(I))_0+(\nu_\phi(I))_1& :\quad {\rm if}\ \phi=\phi_\emptyset\end{cases}\]forms a superideal of \(R\). For example if we take \(\phi_\emptyset(I)=\emptyset\) (resp. \(\phi_0(I)=0\)), a \(\phi\)-\textit{primal} superideal is a primal superideal (resp., a weakly primal superideal). In this paper we study several generalizations of primal superideals of \(R\) and their properties. Lugansk National Taras Shevchenko University 2016-07-12 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/26 Algebra and Discrete Mathematics; Vol 21, No 2 (2016) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/26/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/26/100 Copyright (c) 2016 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2016-07-12T10:09:40Z |
| collection |
OJS |
| language |
English |
| topic |
primal superideal \(\phi\)-\(P\)-primal superideal \(\phi\)-prime superideal 13A02 16D25 16W50 |
| spellingShingle |
primal superideal \(\phi\)-\(P\)-primal superideal \(\phi\)-prime superideal 13A02 16D25 16W50 Jaber, Ameer Generalization of primal superideals |
| topic_facet |
primal superideal \(\phi\)-\(P\)-primal superideal \(\phi\)-prime superideal 13A02 16D25 16W50 |
| format |
Article |
| author |
Jaber, Ameer |
| author_facet |
Jaber, Ameer |
| author_sort |
Jaber, Ameer |
| title |
Generalization of primal superideals |
| title_short |
Generalization of primal superideals |
| title_full |
Generalization of primal superideals |
| title_fullStr |
Generalization of primal superideals |
| title_full_unstemmed |
Generalization of primal superideals |
| title_sort |
generalization of primal superideals |
| description |
Let \(R\) be a commutative super-ring with unity \(1\not=0\). A proper superideal of \(R\) is a superideal \(I\) of \(R\) such that \(I\not=R\). Let \(\phi : \mathfrak{I}(R)\rightarrow\mathfrak{I}(R)\cup\{\emptyset\}\) be any function, where \(\mathfrak{I}(R)\) denotes the set of all proper superideals of \(R\). A homogeneous element \(a\in R\) is \(\phi\)-{\it prime} to \(I\) if \(ra\in I-\phi(I)\) where \(r\) is a homogeneous element in \(R\), then \(r\in I\). We denote by \(\nu_\phi(I)\) the set of all homogeneous elements in \(R\) that are not \(\phi\)-prime to \(I\). We define \(I\) to be \(\phi\)-\textit{primal} if the set \[P=\begin{cases}[(\nu_\phi(I))_0+(\nu_\phi(I))_1\cup\{0\}]+\phi(I) & :\quad {\rm if}\ \phi\not=\phi_\emptyset\\ (\nu_\phi(I))_0+(\nu_\phi(I))_1& :\quad {\rm if}\ \phi=\phi_\emptyset\end{cases}\]forms a superideal of \(R\). For example if we take \(\phi_\emptyset(I)=\emptyset\) (resp. \(\phi_0(I)=0\)), a \(\phi\)-\textit{primal} superideal is a primal superideal (resp., a weakly primal superideal). In this paper we study several generalizations of primal superideals of \(R\) and their properties. |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2016 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/26 |
| work_keys_str_mv |
AT jaberameer generalizationofprimalsuperideals |
| first_indexed |
2025-07-17T10:30:15Z |
| last_indexed |
2025-07-17T10:30:15Z |
| _version_ |
1837889713081417728 |