\((G,\phi)\)-crossed product on \((G,\phi)\)-quasiassociative algebras

The notions of \((G,\phi)\)-crossed product and quasicrossed system are introduced in the setting of \((G,\phi)\)-quasiassociative algebras, i.e., algebras endowed with a grading by a group \(G\), satisfying a ``quasiassociative'' law. It is presented two equivalence relations, one for qua...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Albuquerque, Helena María Mamede, Barreiro, María Elisabete Félix, Delgado, José María Sánchez
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2017
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/283
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:The notions of \((G,\phi)\)-crossed product and quasicrossed system are introduced in the setting of \((G,\phi)\)-quasiassociative algebras, i.e., algebras endowed with a grading by a group \(G\), satisfying a ``quasiassociative'' law. It is presented two equivalence relations, one for quasicrossed systems and another for \((G,\phi)\)-crossed products. Also the notion of graded-bimodule in order to study simple \((G,\phi)\)-crossed products is studied.