\((G,\phi)\)-crossed product on \((G,\phi)\)-quasiassociative algebras
The notions of \((G,\phi)\)-crossed product and quasicrossed system are introduced in the setting of \((G,\phi)\)-quasiassociative algebras, i.e., algebras endowed with a grading by a group \(G\), satisfying a ``quasiassociative'' law. It is presented two equivalence relations, one for qua...
Збережено в:
| Дата: | 2017 |
|---|---|
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2017
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/283 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| Резюме: | The notions of \((G,\phi)\)-crossed product and quasicrossed system are introduced in the setting of \((G,\phi)\)-quasiassociative algebras, i.e., algebras endowed with a grading by a group \(G\), satisfying a ``quasiassociative'' law. It is presented two equivalence relations, one for quasicrossed systems and another for \((G,\phi)\)-crossed products. Also the notion of graded-bimodule in order to study simple \((G,\phi)\)-crossed products is studied. |
|---|