Indecomposable and irreducible \(t\)-monomial matrices over commutative rings

We introduce the notion of the defining  sequence of a permutation  indecomposable  monomial matrix over a commutative ring and obtain   necessary conditions for such matrices to be indecomposable or irreducible in terms of this sequence.

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Bondarenko, Vitaliy Mykhaylovych, Bortos, Maria, Dinis, Ruslana, Tylyshchak, Alexander
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2016
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/287
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-287
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-2872016-11-15T13:03:03Z Indecomposable and irreducible \(t\)-monomial matrices over commutative rings Bondarenko, Vitaliy Mykhaylovych Bortos, Maria Dinis, Ruslana Tylyshchak, Alexander local ring, similarity, indecomposable matrix, irreducible matrix, canonically \(t\)-cyclic matrix, defining sequence, group, representation 15B33, 15A30 We introduce the notion of the defining  sequence of a permutation  indecomposable  monomial matrix over a commutative ring and obtain   necessary conditions for such matrices to be indecomposable or irreducible in terms of this sequence. Lugansk National Taras Shevchenko University 2016-11-15 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/287 Algebra and Discrete Mathematics; Vol 22, No 1 (2016) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/287/pdf Copyright (c) 2016 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic local ring
similarity
indecomposable matrix
irreducible matrix
canonically \(t\)-cyclic matrix
defining sequence
group
representation
15B33
15A30
spellingShingle local ring
similarity
indecomposable matrix
irreducible matrix
canonically \(t\)-cyclic matrix
defining sequence
group
representation
15B33
15A30
Bondarenko, Vitaliy Mykhaylovych
Bortos, Maria
Dinis, Ruslana
Tylyshchak, Alexander
Indecomposable and irreducible \(t\)-monomial matrices over commutative rings
topic_facet local ring
similarity
indecomposable matrix
irreducible matrix
canonically \(t\)-cyclic matrix
defining sequence
group
representation
15B33
15A30
format Article
author Bondarenko, Vitaliy Mykhaylovych
Bortos, Maria
Dinis, Ruslana
Tylyshchak, Alexander
author_facet Bondarenko, Vitaliy Mykhaylovych
Bortos, Maria
Dinis, Ruslana
Tylyshchak, Alexander
author_sort Bondarenko, Vitaliy Mykhaylovych
title Indecomposable and irreducible \(t\)-monomial matrices over commutative rings
title_short Indecomposable and irreducible \(t\)-monomial matrices over commutative rings
title_full Indecomposable and irreducible \(t\)-monomial matrices over commutative rings
title_fullStr Indecomposable and irreducible \(t\)-monomial matrices over commutative rings
title_full_unstemmed Indecomposable and irreducible \(t\)-monomial matrices over commutative rings
title_sort indecomposable and irreducible \(t\)-monomial matrices over commutative rings
description We introduce the notion of the defining  sequence of a permutation  indecomposable  monomial matrix over a commutative ring and obtain   necessary conditions for such matrices to be indecomposable or irreducible in terms of this sequence.
publisher Lugansk National Taras Shevchenko University
publishDate 2016
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/287
work_keys_str_mv AT bondarenkovitaliymykhaylovych indecomposableandirreducibletmonomialmatricesovercommutativerings
AT bortosmaria indecomposableandirreducibletmonomialmatricesovercommutativerings
AT dinisruslana indecomposableandirreducibletmonomialmatricesovercommutativerings
AT tylyshchakalexander indecomposableandirreducibletmonomialmatricesovercommutativerings
first_indexed 2024-04-12T06:27:40Z
last_indexed 2024-04-12T06:27:40Z
_version_ 1796109249639612416