Hamming distance between the strings generated by adjacency matrix of a graph and their sum

Let \(A(G)\) be the adjacency matrix of a graph \(G\). Denote by \(s(v)\) the row of the adjacency matrix corresponding to the vertex \(v\) of \(G\). It is a string in the set \({\Bbb Z}_2^n\) of all \(n\)-tuples over the field of order two. The Hamming distance between the strings \(s(u)\) and \(s(...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Ganagi, Asha B., Ramane, Harishchandra S.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2016
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/295
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:Let \(A(G)\) be the adjacency matrix of a graph \(G\). Denote by \(s(v)\) the row of the adjacency matrix corresponding to the vertex \(v\) of \(G\). It is a string in the set \({\Bbb Z}_2^n\) of all \(n\)-tuples over the field of order two. The Hamming distance between the strings \(s(u)\) and \(s(v)\) is the number of positions in which \(s(u)\) and \(s(v)\) differ. In this paper the Hamming distance between the strings generated by the adjacency matrix is obtained. Also \(H_A(G)\), the sum of the Hamming distances between all pairs of strings generated by the adjacency matrix is obtained for some graphs.