On the difference between the spectral radius and the maximum degree of graphs

Let \(G\) be a graph with the eigenvalues \(\lambda_1(G)\geq\cdots\geq\lambda_n(G)\). The largest eigenvalue of \(G\), \(\lambda_1(G)\), is called the spectral radius of \(G\). Let \(\beta(G)=\Delta(G)-\lambda_1(G)\), where \(\Delta(G)\) is the maximum degree of vertices of \(G\). It is known that i...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Author: Oboudi, Mohammad Reza
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2018
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/303
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Description
Summary:Let \(G\) be a graph with the eigenvalues \(\lambda_1(G)\geq\cdots\geq\lambda_n(G)\). The largest eigenvalue of \(G\), \(\lambda_1(G)\), is called the spectral radius of \(G\). Let \(\beta(G)=\Delta(G)-\lambda_1(G)\), where \(\Delta(G)\) is the maximum degree of vertices of \(G\). It is known that if \(G\) is a connected graph, then \(\beta(G)\geq0\) and the equality holds if and only if \(G\) is regular. In this paper we study the maximum value and the minimum value of \(\beta(G)\) among all non-regular connected graphs. In particular we show that for every tree \(T\) with \(n\geq3\) vertices, \(n-1-\sqrt{n-1}\geq\beta(T)\geq 4\sin^2(\frac{\pi}{2n+2})\). Moreover, we prove that in the right side the equality holds if and only if \(T\cong P_n\) and in the other side the equality holds if and only if \(T\cong S_n\), where \(P_n\) and \(S_n\) are the path and the star on \(n\) vertices, respectively.