On n-stars in colorings and orientations of graphs

An \(n\)-star \(S\) in a graph \(G\) is the union of geodesic intervals \(I _{1} , \ldots , I _{k} \) with common end \(O\) such that the subgraphs \(I_{ 1}\setminus\{O\}, \ldots , I _{k}\setminus\{O\}\) are pairwise disjoint and \(l(I _{1}) +\ldots + l(I _{k})= n.\) If the edges of \(G\) are orient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2016
1. Verfasser: Protasov, Igor Vladimirovich
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2016
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/308
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:An \(n\)-star \(S\) in a graph \(G\) is the union of geodesic intervals \(I _{1} , \ldots , I _{k} \) with common end \(O\) such that the subgraphs \(I_{ 1}\setminus\{O\}, \ldots , I _{k}\setminus\{O\}\) are pairwise disjoint and \(l(I _{1}) +\ldots + l(I _{k})= n.\) If the edges of \(G\) are oriented, \(S\) is directed if each ray \(I _{i}\) is directed. For natural number \(n, r\), we construct a graph \(G\) of \(\operatorname{diam} (G)=n\) such that, for any \(r\)-coloring and orientation of \(E(G)\), there exists a directed \(n\)-star with monochrome rays of pairwise distinct colors.