Cross-cap singularities counted with sign
A method for computing the algebraic number of cross-cap singularities for mapping from \(m\)-dimensional compact manifold with boundary \(M\subset \mathbb{R}^m\) into \(\mathbb{R}^{2m-1}\), \(m\) is odd, is presented. As an application, the intersection number of an immersion \(g\colon S^{m-1}(r)\t...
Збережено в:
Дата: | 2018 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/32 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete MathematicsРезюме: | A method for computing the algebraic number of cross-cap singularities for mapping from \(m\)-dimensional compact manifold with boundary \(M\subset \mathbb{R}^m\) into \(\mathbb{R}^{2m-1}\), \(m\) is odd, is presented. As an application, the intersection number of an immersion \(g\colon S^{m-1}(r)\to\mathbb{R}^{2m-2}\) is described as the algebraic number of cross-caps of a mapping naturally associated with \(g\). |
---|