Cross-cap singularities counted with sign
A method for computing the algebraic number of cross-cap singularities for mapping from \(m\)-dimensional compact manifold with boundary \(M\subset \mathbb{R}^m\) into \(\mathbb{R}^{2m-1}\), \(m\) is odd, is presented. As an application, the intersection number of an immersion \(g\colon S^{m-1}(r)\t...
Збережено в:
Дата: | 2018 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/32 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-32 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-322018-07-24T22:56:15Z Cross-cap singularities counted with sign Krzyzanowska, Iwona cross-cap, immersion, Stiefel manifold, intersection number, signature 14P25, 57R45, 57R42, 12Y05 A method for computing the algebraic number of cross-cap singularities for mapping from \(m\)-dimensional compact manifold with boundary \(M\subset \mathbb{R}^m\) into \(\mathbb{R}^{2m-1}\), \(m\) is odd, is presented. As an application, the intersection number of an immersion \(g\colon S^{m-1}(r)\to\mathbb{R}^{2m-2}\) is described as the algebraic number of cross-caps of a mapping naturally associated with \(g\). Lugansk National Taras Shevchenko University 2018-07-25 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/32 Algebra and Discrete Mathematics; Vol 25, No 2 (2018) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/32/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/32/390 Copyright (c) 2018 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
collection |
OJS |
language |
English |
topic |
cross-cap immersion Stiefel manifold intersection number signature 14P25 57R45 57R42 12Y05 |
spellingShingle |
cross-cap immersion Stiefel manifold intersection number signature 14P25 57R45 57R42 12Y05 Krzyzanowska, Iwona Cross-cap singularities counted with sign |
topic_facet |
cross-cap immersion Stiefel manifold intersection number signature 14P25 57R45 57R42 12Y05 |
format |
Article |
author |
Krzyzanowska, Iwona |
author_facet |
Krzyzanowska, Iwona |
author_sort |
Krzyzanowska, Iwona |
title |
Cross-cap singularities counted with sign |
title_short |
Cross-cap singularities counted with sign |
title_full |
Cross-cap singularities counted with sign |
title_fullStr |
Cross-cap singularities counted with sign |
title_full_unstemmed |
Cross-cap singularities counted with sign |
title_sort |
cross-cap singularities counted with sign |
description |
A method for computing the algebraic number of cross-cap singularities for mapping from \(m\)-dimensional compact manifold with boundary \(M\subset \mathbb{R}^m\) into \(\mathbb{R}^{2m-1}\), \(m\) is odd, is presented. As an application, the intersection number of an immersion \(g\colon S^{m-1}(r)\to\mathbb{R}^{2m-2}\) is described as the algebraic number of cross-caps of a mapping naturally associated with \(g\). |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2018 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/32 |
work_keys_str_mv |
AT krzyzanowskaiwona crosscapsingularitiescountedwithsign |
first_indexed |
2024-04-12T06:26:10Z |
last_indexed |
2024-04-12T06:26:10Z |
_version_ |
1796109219402874880 |