Cross-cap singularities counted with sign

A method for computing the algebraic number of cross-cap singularities for mapping from \(m\)-dimensional compact manifold with boundary \(M\subset \mathbb{R}^m\) into \(\mathbb{R}^{2m-1}\), \(m\) is odd, is presented. As an application, the intersection number of an immersion \(g\colon S^{m-1}(r)\t...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Krzyzanowska, Iwona
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/32
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-32
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-322018-07-24T22:56:15Z Cross-cap singularities counted with sign Krzyzanowska, Iwona cross-cap, immersion, Stiefel manifold, intersection number, signature 14P25, 57R45, 57R42, 12Y05 A method for computing the algebraic number of cross-cap singularities for mapping from \(m\)-dimensional compact manifold with boundary \(M\subset \mathbb{R}^m\) into \(\mathbb{R}^{2m-1}\), \(m\) is odd, is presented. As an application, the intersection number of an immersion \(g\colon S^{m-1}(r)\to\mathbb{R}^{2m-2}\) is described as the algebraic number of cross-caps of a mapping naturally associated with \(g\). Lugansk National Taras Shevchenko University 2018-07-25 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/32 Algebra and Discrete Mathematics; Vol 25, No 2 (2018) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/32/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/32/390 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic cross-cap
immersion
Stiefel manifold
intersection number
signature
14P25
57R45
57R42
12Y05
spellingShingle cross-cap
immersion
Stiefel manifold
intersection number
signature
14P25
57R45
57R42
12Y05
Krzyzanowska, Iwona
Cross-cap singularities counted with sign
topic_facet cross-cap
immersion
Stiefel manifold
intersection number
signature
14P25
57R45
57R42
12Y05
format Article
author Krzyzanowska, Iwona
author_facet Krzyzanowska, Iwona
author_sort Krzyzanowska, Iwona
title Cross-cap singularities counted with sign
title_short Cross-cap singularities counted with sign
title_full Cross-cap singularities counted with sign
title_fullStr Cross-cap singularities counted with sign
title_full_unstemmed Cross-cap singularities counted with sign
title_sort cross-cap singularities counted with sign
description A method for computing the algebraic number of cross-cap singularities for mapping from \(m\)-dimensional compact manifold with boundary \(M\subset \mathbb{R}^m\) into \(\mathbb{R}^{2m-1}\), \(m\) is odd, is presented. As an application, the intersection number of an immersion \(g\colon S^{m-1}(r)\to\mathbb{R}^{2m-2}\) is described as the algebraic number of cross-caps of a mapping naturally associated with \(g\).
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/32
work_keys_str_mv AT krzyzanowskaiwona crosscapsingularitiescountedwithsign
first_indexed 2024-04-12T06:26:10Z
last_indexed 2024-04-12T06:26:10Z
_version_ 1796109219402874880