Module decompositions via Rickart modules

This work is devoted to the investigation of module decompositions which arise from Rickart modules, socle and radical of modules. In this regard, the structure and several illustrative examples of inverse split modules relative to the socle and radical are given. It is shown that a module \(M\) has...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Harmanci, Abdullah, Ungor, Burcu
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/327
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-327
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-3272018-10-20T08:02:25Z Module decompositions via Rickart modules Harmanci, Abdullah Ungor, Burcu \(\mathrm{Soc}(\cdot)\)-inverse split module, \(\mathrm{Rad}(\cdot)\)-inverse split module, Rickart module 16D10; 16D40; 16D80 This work is devoted to the investigation of module decompositions which arise from Rickart modules, socle and radical of modules. In this regard, the structure and several illustrative examples of inverse split modules relative to the socle and radical are given. It is shown that a module \(M\) has decompositions \(M=\mathrm{Soc}(M) \oplus N\) and \(M=\mathrm{Rad}(M) \oplus K\) where \(N\) and \(K\) are Rickart if and only if \(M\) is \(\mathrm{Soc}(M)\)-inverse split and \(\mathrm{Rad}(M)\)-inverse split, respectively. Right \(\mathrm{Soc}(\cdot)\)-inverse split left perfect rings and semiprimitive right hereditary rings are determined exactly. Also, some characterizations for a ring \(R\) which has a decomposition \(R=\mathrm{Soc}(R_R)\oplus I\) with \(I\) hereditary Rickart module are obtained. Lugansk National Taras Shevchenko University 2018-10-20 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/327 Algebra and Discrete Mathematics; Vol 26, No 1 (2018) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/327/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/327/438 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic \(\mathrm{Soc}(\cdot)\)-inverse split module
\(\mathrm{Rad}(\cdot)\)-inverse split module
Rickart module
16D10; 16D40; 16D80
spellingShingle \(\mathrm{Soc}(\cdot)\)-inverse split module
\(\mathrm{Rad}(\cdot)\)-inverse split module
Rickart module
16D10; 16D40; 16D80
Harmanci, Abdullah
Ungor, Burcu
Module decompositions via Rickart modules
topic_facet \(\mathrm{Soc}(\cdot)\)-inverse split module
\(\mathrm{Rad}(\cdot)\)-inverse split module
Rickart module
16D10; 16D40; 16D80
format Article
author Harmanci, Abdullah
Ungor, Burcu
author_facet Harmanci, Abdullah
Ungor, Burcu
author_sort Harmanci, Abdullah
title Module decompositions via Rickart modules
title_short Module decompositions via Rickart modules
title_full Module decompositions via Rickart modules
title_fullStr Module decompositions via Rickart modules
title_full_unstemmed Module decompositions via Rickart modules
title_sort module decompositions via rickart modules
description This work is devoted to the investigation of module decompositions which arise from Rickart modules, socle and radical of modules. In this regard, the structure and several illustrative examples of inverse split modules relative to the socle and radical are given. It is shown that a module \(M\) has decompositions \(M=\mathrm{Soc}(M) \oplus N\) and \(M=\mathrm{Rad}(M) \oplus K\) where \(N\) and \(K\) are Rickart if and only if \(M\) is \(\mathrm{Soc}(M)\)-inverse split and \(\mathrm{Rad}(M)\)-inverse split, respectively. Right \(\mathrm{Soc}(\cdot)\)-inverse split left perfect rings and semiprimitive right hereditary rings are determined exactly. Also, some characterizations for a ring \(R\) which has a decomposition \(R=\mathrm{Soc}(R_R)\oplus I\) with \(I\) hereditary Rickart module are obtained.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/327
work_keys_str_mv AT harmanciabdullah moduledecompositionsviarickartmodules
AT ungorburcu moduledecompositionsviarickartmodules
first_indexed 2024-04-12T06:25:16Z
last_indexed 2024-04-12T06:25:16Z
_version_ 1796109219508781056