Gram matrices and Stirling numbers of a class of diagram algebras, I
In this paper, we introduce Gram matrices for the signed partition algebras, the algebra of \(\mathbb{Z}_2\)-relations and the partition algebras. The nondegeneracy and symmetic nature of these Gram matrices are establised. Also, \((s_1, s_2, r_1, r_2, p_1, p_2)\)-Stirling numbers of the second kind...
Gespeichert in:
Datum: | 2018 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
Schlagworte: | |
Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/36 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsZusammenfassung: | In this paper, we introduce Gram matrices for the signed partition algebras, the algebra of \(\mathbb{Z}_2\)-relations and the partition algebras. The nondegeneracy and symmetic nature of these Gram matrices are establised. Also, \((s_1, s_2, r_1, r_2, p_1, p_2)\)-Stirling numbers of the second kind for the signed partition algebras, the algebra of \(\mathbb{Z}_2\)-relations are introduced and their identities are established. Stirling numbers of the second kind for the partition algebras are introduced and their identities are established. |
---|