Modules in which every surjective endomorphism has a \(\delta\)-small kernel
In this paper, we introduce the notion of \(\delta\)-Hopfian modules. We give some properties of these modules and provide a~characterization of semisimple rings in terms of \(\delta\)-Hopfian modules by proving that a ring \(R\) is semisimple if and only if every \(R\)-module is \(\delta\)-Hopf...
Збережено в:
Дата: | 2019 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2019
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/365 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-365 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-3652019-01-24T08:21:31Z Modules in which every surjective endomorphism has a \(\delta\)-small kernel Ebrahimi Atani, Shahabaddin Khoramdel, Mehdi Dolati Pishhesari, Saboura Dedekind finite modules, Hopfian modules, generalized Hopfian modules, \(\delta\)-Hopfian modules 16D10, 16D40, 16D90 In this paper, we introduce the notion of \(\delta\)-Hopfian modules. We give some properties of these modules and provide a~characterization of semisimple rings in terms of \(\delta\)-Hopfian modules by proving that a ring \(R\) is semisimple if and only if every \(R\)-module is \(\delta\)-Hopfian. Also, we show that for a ring \(R\), \(\delta(R)=J(R)\) if and only if for all \(R\)-modules, the conditions \(\delta\)-Hopfian and generalized Hopfian are equivalent. Moreover, we prove that \(\delta\)-Hopfian property is a Morita invariant. Further, the \(\delta\)-Hopficity of modules over truncated polynomial and triangular matrix rings are considered. Lugansk National Taras Shevchenko University 2019-01-24 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/365 Algebra and Discrete Mathematics; Vol 26, No 2 (2018) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/365/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/365/150 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/365/444 Copyright (c) 2019 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
collection |
OJS |
language |
English |
topic |
Dedekind finite modules Hopfian modules generalized Hopfian modules \(\delta\)-Hopfian modules 16D10 16D40 16D90 |
spellingShingle |
Dedekind finite modules Hopfian modules generalized Hopfian modules \(\delta\)-Hopfian modules 16D10 16D40 16D90 Ebrahimi Atani, Shahabaddin Khoramdel, Mehdi Dolati Pishhesari, Saboura Modules in which every surjective endomorphism has a \(\delta\)-small kernel |
topic_facet |
Dedekind finite modules Hopfian modules generalized Hopfian modules \(\delta\)-Hopfian modules 16D10 16D40 16D90 |
format |
Article |
author |
Ebrahimi Atani, Shahabaddin Khoramdel, Mehdi Dolati Pishhesari, Saboura |
author_facet |
Ebrahimi Atani, Shahabaddin Khoramdel, Mehdi Dolati Pishhesari, Saboura |
author_sort |
Ebrahimi Atani, Shahabaddin |
title |
Modules in which every surjective endomorphism has a \(\delta\)-small kernel |
title_short |
Modules in which every surjective endomorphism has a \(\delta\)-small kernel |
title_full |
Modules in which every surjective endomorphism has a \(\delta\)-small kernel |
title_fullStr |
Modules in which every surjective endomorphism has a \(\delta\)-small kernel |
title_full_unstemmed |
Modules in which every surjective endomorphism has a \(\delta\)-small kernel |
title_sort |
modules in which every surjective endomorphism has a \(\delta\)-small kernel |
description |
In this paper, we introduce the notion of \(\delta\)-Hopfian modules. We give some properties of these modules and provide a~characterization of semisimple rings in terms of \(\delta\)-Hopfian modules by proving that a ring \(R\) is semisimple if and only if every \(R\)-module is \(\delta\)-Hopfian. Also, we show that for a ring \(R\), \(\delta(R)=J(R)\) if and only if for all \(R\)-modules, the conditions \(\delta\)-Hopfian and generalized Hopfian are equivalent. Moreover, we prove that \(\delta\)-Hopfian property is a Morita invariant. Further, the \(\delta\)-Hopficity of modules over truncated polynomial and triangular matrix rings are considered. |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2019 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/365 |
work_keys_str_mv |
AT ebrahimiatanishahabaddin modulesinwhicheverysurjectiveendomorphismhasadeltasmallkernel AT khoramdelmehdi modulesinwhicheverysurjectiveendomorphismhasadeltasmallkernel AT dolatipishhesarisaboura modulesinwhicheverysurjectiveendomorphismhasadeltasmallkernel |
first_indexed |
2024-04-12T06:25:17Z |
last_indexed |
2024-04-12T06:25:17Z |
_version_ |
1796109249853521920 |