2025-02-22T23:47:32-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22oai%3Aojs.admjournal.luguniv.edu.ua%3Aarticle-388%22&qt=morelikethis&rows=5
2025-02-22T23:47:32-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22oai%3Aojs.admjournal.luguniv.edu.ua%3Aarticle-388%22&qt=morelikethis&rows=5
2025-02-22T23:47:32-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T23:47:32-05:00 DEBUG: Deserialized SOLR response

Endomorphisms of Cayley digraphs of rectangular groups

Let \(\mathrm{Cay}(S,A)\) denote the Cayley digraph of the semigroup \(S\) with respect to the set \(A\), where \(A\) is any subset of \(S\). The function \(f : \mathrm{Cay}(S,A) \to \mathrm{Cay}(S,A)\) is called an endomorphism of \(\mathrm{Cay}(S,A)\) if for each \((x,y) \in E(\mathrm{Cay}(S,A))\)...

Full description

Saved in:
Bibliographic Details
Main Authors: Arworn, Srichan, Gyurov, Boyko, Nupo, Nuttawoot, Panma, Sayan
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2019
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/388
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:ojs.admjournal.luguniv.edu.ua:article-388
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-3882019-01-24T08:21:31Z Endomorphisms of Cayley digraphs of rectangular groups Arworn, Srichan Gyurov, Boyko Nupo, Nuttawoot Panma, Sayan Cayley digraphs, rectangular groups, endomorphisms 05C20, 05C25, 20K30, 20M99 Let \(\mathrm{Cay}(S,A)\) denote the Cayley digraph of the semigroup \(S\) with respect to the set \(A\), where \(A\) is any subset of \(S\). The function \(f : \mathrm{Cay}(S,A) \to \mathrm{Cay}(S,A)\) is called an endomorphism of \(\mathrm{Cay}(S,A)\) if for each \((x,y) \in E(\mathrm{Cay}(S,A))\) implies \((f(x),f(y)) \in E(\mathrm{Cay}(S,A))\) as well, where \(E(\mathrm{Cay}(S,A))\) is an arc set of \(\mathrm{Cay}(S,A)\). We characterize the endomorphisms of Cayley digraphs of rectangular groups \(G\times L\times R\), where the connection sets are in the form of \(A=K\times P\times T\). Lugansk National Taras Shevchenko University 2019-01-24 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/388 Algebra and Discrete Mathematics; Vol 26, No 2 (2018) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/388/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/388/159 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/388/160 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/388/161 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/388/162 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/388/477 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/388/478 Copyright (c) 2019 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic Cayley digraphs
rectangular groups
endomorphisms
05C20
05C25
20K30
20M99
spellingShingle Cayley digraphs
rectangular groups
endomorphisms
05C20
05C25
20K30
20M99
Arworn, Srichan
Gyurov, Boyko
Nupo, Nuttawoot
Panma, Sayan
Endomorphisms of Cayley digraphs of rectangular groups
topic_facet Cayley digraphs
rectangular groups
endomorphisms
05C20
05C25
20K30
20M99
format Article
author Arworn, Srichan
Gyurov, Boyko
Nupo, Nuttawoot
Panma, Sayan
author_facet Arworn, Srichan
Gyurov, Boyko
Nupo, Nuttawoot
Panma, Sayan
author_sort Arworn, Srichan
title Endomorphisms of Cayley digraphs of rectangular groups
title_short Endomorphisms of Cayley digraphs of rectangular groups
title_full Endomorphisms of Cayley digraphs of rectangular groups
title_fullStr Endomorphisms of Cayley digraphs of rectangular groups
title_full_unstemmed Endomorphisms of Cayley digraphs of rectangular groups
title_sort endomorphisms of cayley digraphs of rectangular groups
description Let \(\mathrm{Cay}(S,A)\) denote the Cayley digraph of the semigroup \(S\) with respect to the set \(A\), where \(A\) is any subset of \(S\). The function \(f : \mathrm{Cay}(S,A) \to \mathrm{Cay}(S,A)\) is called an endomorphism of \(\mathrm{Cay}(S,A)\) if for each \((x,y) \in E(\mathrm{Cay}(S,A))\) implies \((f(x),f(y)) \in E(\mathrm{Cay}(S,A))\) as well, where \(E(\mathrm{Cay}(S,A))\) is an arc set of \(\mathrm{Cay}(S,A)\). We characterize the endomorphisms of Cayley digraphs of rectangular groups \(G\times L\times R\), where the connection sets are in the form of \(A=K\times P\times T\).
publisher Lugansk National Taras Shevchenko University
publishDate 2019
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/388
work_keys_str_mv AT arwornsrichan endomorphismsofcayleydigraphsofrectangulargroups
AT gyurovboyko endomorphismsofcayleydigraphsofrectangulargroups
AT nuponuttawoot endomorphismsofcayleydigraphsofrectangulargroups
AT panmasayan endomorphismsofcayleydigraphsofrectangulargroups
first_indexed 2024-04-12T06:26:10Z
last_indexed 2024-04-12T06:26:10Z
_version_ 1796109155705028608