Endomorphisms of Cayley digraphs of rectangular groups
Let \(\mathrm{Cay}(S,A)\) denote the Cayley digraph of the semigroup \(S\) with respect to the set \(A\), where \(A\) is any subset of \(S\). The function \(f : \mathrm{Cay}(S,A) \to \mathrm{Cay}(S,A)\) is called an endomorphism of \(\mathrm{Cay}(S,A)\) if for each \((x,y) \in E(\mathrm{Cay}(S,A))\)...
Збережено в:
| Дата: | 2019 |
|---|---|
| Автори: | , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2019
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/388 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| id |
oai:ojs.admjournal.luguniv.edu.ua:article-388 |
|---|---|
| record_format |
ojs |
| spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-3882019-01-24T08:21:31Z Endomorphisms of Cayley digraphs of rectangular groups Arworn, Srichan Gyurov, Boyko Nupo, Nuttawoot Panma, Sayan Cayley digraphs, rectangular groups, endomorphisms 05C20, 05C25, 20K30, 20M99 Let \(\mathrm{Cay}(S,A)\) denote the Cayley digraph of the semigroup \(S\) with respect to the set \(A\), where \(A\) is any subset of \(S\). The function \(f : \mathrm{Cay}(S,A) \to \mathrm{Cay}(S,A)\) is called an endomorphism of \(\mathrm{Cay}(S,A)\) if for each \((x,y) \in E(\mathrm{Cay}(S,A))\) implies \((f(x),f(y)) \in E(\mathrm{Cay}(S,A))\) as well, where \(E(\mathrm{Cay}(S,A))\) is an arc set of \(\mathrm{Cay}(S,A)\). We characterize the endomorphisms of Cayley digraphs of rectangular groups \(G\times L\times R\), where the connection sets are in the form of \(A=K\times P\times T\). Lugansk National Taras Shevchenko University 2019-01-24 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/388 Algebra and Discrete Mathematics; Vol 26, No 2 (2018) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/388/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/388/159 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/388/160 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/388/161 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/388/162 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/388/477 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/388/478 Copyright (c) 2019 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2019-01-24T08:21:31Z |
| collection |
OJS |
| language |
English |
| topic |
Cayley digraphs rectangular groups endomorphisms 05C20 05C25 20K30 20M99 |
| spellingShingle |
Cayley digraphs rectangular groups endomorphisms 05C20 05C25 20K30 20M99 Arworn, Srichan Gyurov, Boyko Nupo, Nuttawoot Panma, Sayan Endomorphisms of Cayley digraphs of rectangular groups |
| topic_facet |
Cayley digraphs rectangular groups endomorphisms 05C20 05C25 20K30 20M99 |
| format |
Article |
| author |
Arworn, Srichan Gyurov, Boyko Nupo, Nuttawoot Panma, Sayan |
| author_facet |
Arworn, Srichan Gyurov, Boyko Nupo, Nuttawoot Panma, Sayan |
| author_sort |
Arworn, Srichan |
| title |
Endomorphisms of Cayley digraphs of rectangular groups |
| title_short |
Endomorphisms of Cayley digraphs of rectangular groups |
| title_full |
Endomorphisms of Cayley digraphs of rectangular groups |
| title_fullStr |
Endomorphisms of Cayley digraphs of rectangular groups |
| title_full_unstemmed |
Endomorphisms of Cayley digraphs of rectangular groups |
| title_sort |
endomorphisms of cayley digraphs of rectangular groups |
| description |
Let \(\mathrm{Cay}(S,A)\) denote the Cayley digraph of the semigroup \(S\) with respect to the set \(A\), where \(A\) is any subset of \(S\). The function \(f : \mathrm{Cay}(S,A) \to \mathrm{Cay}(S,A)\) is called an endomorphism of \(\mathrm{Cay}(S,A)\) if for each \((x,y) \in E(\mathrm{Cay}(S,A))\) implies \((f(x),f(y)) \in E(\mathrm{Cay}(S,A))\) as well, where \(E(\mathrm{Cay}(S,A))\) is an arc set of \(\mathrm{Cay}(S,A)\). We characterize the endomorphisms of Cayley digraphs of rectangular groups \(G\times L\times R\), where the connection sets are in the form of \(A=K\times P\times T\). |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2019 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/388 |
| work_keys_str_mv |
AT arwornsrichan endomorphismsofcayleydigraphsofrectangulargroups AT gyurovboyko endomorphismsofcayleydigraphsofrectangulargroups AT nuponuttawoot endomorphismsofcayleydigraphsofrectangulargroups AT panmasayan endomorphismsofcayleydigraphsofrectangulargroups |
| first_indexed |
2025-07-17T10:31:16Z |
| last_indexed |
2025-07-17T10:31:16Z |
| _version_ |
1837890135723606016 |