2025-02-22T23:47:32-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22oai%3Aojs.admjournal.luguniv.edu.ua%3Aarticle-388%22&qt=morelikethis&rows=5
2025-02-22T23:47:32-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22oai%3Aojs.admjournal.luguniv.edu.ua%3Aarticle-388%22&qt=morelikethis&rows=5
2025-02-22T23:47:32-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T23:47:32-05:00 DEBUG: Deserialized SOLR response
Endomorphisms of Cayley digraphs of rectangular groups
Let \(\mathrm{Cay}(S,A)\) denote the Cayley digraph of the semigroup \(S\) with respect to the set \(A\), where \(A\) is any subset of \(S\). The function \(f : \mathrm{Cay}(S,A) \to \mathrm{Cay}(S,A)\) is called an endomorphism of \(\mathrm{Cay}(S,A)\) if for each \((x,y) \in E(\mathrm{Cay}(S,A))\)...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Lugansk National Taras Shevchenko University
2019
|
Subjects: | |
Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/388 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:ojs.admjournal.luguniv.edu.ua:article-388 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-3882019-01-24T08:21:31Z Endomorphisms of Cayley digraphs of rectangular groups Arworn, Srichan Gyurov, Boyko Nupo, Nuttawoot Panma, Sayan Cayley digraphs, rectangular groups, endomorphisms 05C20, 05C25, 20K30, 20M99 Let \(\mathrm{Cay}(S,A)\) denote the Cayley digraph of the semigroup \(S\) with respect to the set \(A\), where \(A\) is any subset of \(S\). The function \(f : \mathrm{Cay}(S,A) \to \mathrm{Cay}(S,A)\) is called an endomorphism of \(\mathrm{Cay}(S,A)\) if for each \((x,y) \in E(\mathrm{Cay}(S,A))\) implies \((f(x),f(y)) \in E(\mathrm{Cay}(S,A))\) as well, where \(E(\mathrm{Cay}(S,A))\) is an arc set of \(\mathrm{Cay}(S,A)\). We characterize the endomorphisms of Cayley digraphs of rectangular groups \(G\times L\times R\), where the connection sets are in the form of \(A=K\times P\times T\). Lugansk National Taras Shevchenko University 2019-01-24 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/388 Algebra and Discrete Mathematics; Vol 26, No 2 (2018) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/388/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/388/159 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/388/160 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/388/161 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/388/162 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/388/477 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/388/478 Copyright (c) 2019 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
collection |
OJS |
language |
English |
topic |
Cayley digraphs rectangular groups endomorphisms 05C20 05C25 20K30 20M99 |
spellingShingle |
Cayley digraphs rectangular groups endomorphisms 05C20 05C25 20K30 20M99 Arworn, Srichan Gyurov, Boyko Nupo, Nuttawoot Panma, Sayan Endomorphisms of Cayley digraphs of rectangular groups |
topic_facet |
Cayley digraphs rectangular groups endomorphisms 05C20 05C25 20K30 20M99 |
format |
Article |
author |
Arworn, Srichan Gyurov, Boyko Nupo, Nuttawoot Panma, Sayan |
author_facet |
Arworn, Srichan Gyurov, Boyko Nupo, Nuttawoot Panma, Sayan |
author_sort |
Arworn, Srichan |
title |
Endomorphisms of Cayley digraphs of rectangular groups |
title_short |
Endomorphisms of Cayley digraphs of rectangular groups |
title_full |
Endomorphisms of Cayley digraphs of rectangular groups |
title_fullStr |
Endomorphisms of Cayley digraphs of rectangular groups |
title_full_unstemmed |
Endomorphisms of Cayley digraphs of rectangular groups |
title_sort |
endomorphisms of cayley digraphs of rectangular groups |
description |
Let \(\mathrm{Cay}(S,A)\) denote the Cayley digraph of the semigroup \(S\) with respect to the set \(A\), where \(A\) is any subset of \(S\). The function \(f : \mathrm{Cay}(S,A) \to \mathrm{Cay}(S,A)\) is called an endomorphism of \(\mathrm{Cay}(S,A)\) if for each \((x,y) \in E(\mathrm{Cay}(S,A))\) implies \((f(x),f(y)) \in E(\mathrm{Cay}(S,A))\) as well, where \(E(\mathrm{Cay}(S,A))\) is an arc set of \(\mathrm{Cay}(S,A)\). We characterize the endomorphisms of Cayley digraphs of rectangular groups \(G\times L\times R\), where the connection sets are in the form of \(A=K\times P\times T\). |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2019 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/388 |
work_keys_str_mv |
AT arwornsrichan endomorphismsofcayleydigraphsofrectangulargroups AT gyurovboyko endomorphismsofcayleydigraphsofrectangulargroups AT nuponuttawoot endomorphismsofcayleydigraphsofrectangulargroups AT panmasayan endomorphismsofcayleydigraphsofrectangulargroups |
first_indexed |
2024-04-12T06:26:10Z |
last_indexed |
2024-04-12T06:26:10Z |
_version_ |
1796109155705028608 |