Planarity of a spanning subgraph of the intersection graph of ideals of a commutative ring II, Quasilocal Case

The rings we consider in this article are commutative with identity \(1\neq 0\) and are not fields. Let \(R\) be a ring. We denote the collection of all proper ideals of \(R\) by \(\mathbb{I}(R)\) and the collection \(\mathbb{I}(R)\setminus \{(0)\}\) by \(\mathbb{I}(R)^{*}\). Let \(H(R)\) be the gra...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автори: Visweswaran, S., Vadhel, P.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2019
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/39
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:The rings we consider in this article are commutative with identity \(1\neq 0\) and are not fields. Let \(R\) be a ring. We denote the collection of all proper ideals of \(R\) by \(\mathbb{I}(R)\) and the collection \(\mathbb{I}(R)\setminus \{(0)\}\) by \(\mathbb{I}(R)^{*}\). Let \(H(R)\) be the graph associated with \(R\) whose vertex set is \(\mathbb{I}(R)^{*}\) and distinct vertices \(I, J\) are adjacent if and only if \(IJ\neq (0)\). The aim of this article is to discuss the planarity of \(H(R)\) in the case when \(R\) is quasilocal.