Planarity of a spanning subgraph of the intersection graph of ideals of a commutative ring II, Quasilocal Case

The rings we consider in this article are commutative with identity \(1\neq 0\) and are not fields. Let \(R\) be a ring. We denote the collection of all proper ideals of \(R\) by \(\mathbb{I}(R)\) and the collection \(\mathbb{I}(R)\setminus \{(0)\}\) by \(\mathbb{I}(R)^{*}\). Let \(H(R)\) be the gra...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автори: Visweswaran, S., Vadhel, P.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2019
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/39
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-39
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-392019-03-23T17:44:10Z Planarity of a spanning subgraph of the intersection graph of ideals of a commutative ring II, Quasilocal Case Visweswaran, S. Vadhel, P. quasilocal ring, local Artinian ring, special principal ideal ring, planar graphPlanar graph, Clique number of a graph, Quasilocal ring, Special principal ideal ring 13A15, 05C25 The rings we consider in this article are commutative with identity \(1\neq 0\) and are not fields. Let \(R\) be a ring. We denote the collection of all proper ideals of \(R\) by \(\mathbb{I}(R)\) and the collection \(\mathbb{I}(R)\setminus \{(0)\}\) by \(\mathbb{I}(R)^{*}\). Let \(H(R)\) be the graph associated with \(R\) whose vertex set is \(\mathbb{I}(R)^{*}\) and distinct vertices \(I, J\) are adjacent if and only if \(IJ\neq (0)\). The aim of this article is to discuss the planarity of \(H(R)\) in the case when \(R\) is quasilocal. Lugansk National Taras Shevchenko University 2019-03-23 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/39 Algebra and Discrete Mathematics; Vol 27, No 1 (2019) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/39/pdf Copyright (c) 2019 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic quasilocal ring
local Artinian ring
special principal ideal ring
planar graphPlanar graph
Clique number of a graph
Quasilocal ring
Special principal ideal ring
13A15
05C25
spellingShingle quasilocal ring
local Artinian ring
special principal ideal ring
planar graphPlanar graph
Clique number of a graph
Quasilocal ring
Special principal ideal ring
13A15
05C25
Visweswaran, S.
Vadhel, P.
Planarity of a spanning subgraph of the intersection graph of ideals of a commutative ring II, Quasilocal Case
topic_facet quasilocal ring
local Artinian ring
special principal ideal ring
planar graphPlanar graph
Clique number of a graph
Quasilocal ring
Special principal ideal ring
13A15
05C25
format Article
author Visweswaran, S.
Vadhel, P.
author_facet Visweswaran, S.
Vadhel, P.
author_sort Visweswaran, S.
title Planarity of a spanning subgraph of the intersection graph of ideals of a commutative ring II, Quasilocal Case
title_short Planarity of a spanning subgraph of the intersection graph of ideals of a commutative ring II, Quasilocal Case
title_full Planarity of a spanning subgraph of the intersection graph of ideals of a commutative ring II, Quasilocal Case
title_fullStr Planarity of a spanning subgraph of the intersection graph of ideals of a commutative ring II, Quasilocal Case
title_full_unstemmed Planarity of a spanning subgraph of the intersection graph of ideals of a commutative ring II, Quasilocal Case
title_sort planarity of a spanning subgraph of the intersection graph of ideals of a commutative ring ii, quasilocal case
description The rings we consider in this article are commutative with identity \(1\neq 0\) and are not fields. Let \(R\) be a ring. We denote the collection of all proper ideals of \(R\) by \(\mathbb{I}(R)\) and the collection \(\mathbb{I}(R)\setminus \{(0)\}\) by \(\mathbb{I}(R)^{*}\). Let \(H(R)\) be the graph associated with \(R\) whose vertex set is \(\mathbb{I}(R)^{*}\) and distinct vertices \(I, J\) are adjacent if and only if \(IJ\neq (0)\). The aim of this article is to discuss the planarity of \(H(R)\) in the case when \(R\) is quasilocal.
publisher Lugansk National Taras Shevchenko University
publishDate 2019
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/39
work_keys_str_mv AT visweswarans planarityofaspanningsubgraphoftheintersectiongraphofidealsofacommutativeringiiquasilocalcase
AT vadhelp planarityofaspanningsubgraphoftheintersectiongraphofidealsofacommutativeringiiquasilocalcase
first_indexed 2024-04-12T06:25:17Z
last_indexed 2024-04-12T06:25:17Z
_version_ 1796109234349277184