On strongly almost \(m\)-\(\omega_1\)-\(p^{\omega+n}\)-projective abelian \(p\)-groups

For any non-negative integers \(m\) and \(n\) we define the class of \textit{strongly almost \(m\)-\(\omega_1\)-\(p^{\omega+n}\)-projective groups} which properly encompasses the classes of \textit{strongly \(m\)-\(\omega_1\)-\(p^{\omega+n}\)-projective groups} and \textit{strongly almost \(\omega_1...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автор: Danchev, Peter
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2016
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/40
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:For any non-negative integers \(m\) and \(n\) we define the class of \textit{strongly almost \(m\)-\(\omega_1\)-\(p^{\omega+n}\)-projective groups} which properly encompasses the classes of \textit{strongly \(m\)-\(\omega_1\)-\(p^{\omega+n}\)-projective groups} and \textit{strongly almost \(\omega_1\)-\(p^{\omega+n}\)-projective groups}, defined by the author in Demonstr. Math. (2014) and Hacettepe J. Math. Stat. (2015), respectively. Certain results about this new group class are proved as well as it is shown that it shares many analogous basic properties as those of the aforementioned two group classes.