2025-02-22T23:37:22-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22oai%3Aojs.admjournal.luguniv.edu.ua%3Aarticle-426%22&qt=morelikethis&rows=5
2025-02-22T23:37:22-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22oai%3Aojs.admjournal.luguniv.edu.ua%3Aarticle-426%22&qt=morelikethis&rows=5
2025-02-22T23:37:22-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T23:37:22-05:00 DEBUG: Deserialized SOLR response

On disjoint union of \(\mathrm{M}\)-graphs

Given a pair \((X,\sigma)\) consisting of a finite tree \(X\) and its vertex self-map \(\sigma\) one can construct the corresponding Markov graph \(\Gamma(X,\sigma)\) which is a digraph that encodes \(\sigma\)-covering relation between edges in \(X\). \(\mathrm{M}\)-graphs are Markov graphs up to is...

Full description

Saved in:
Bibliographic Details
Main Author: Kozerenko, Sergiy
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2018
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/426
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Given a pair \((X,\sigma)\) consisting of a finite tree \(X\) and its vertex self-map \(\sigma\) one can construct the corresponding Markov graph \(\Gamma(X,\sigma)\) which is a digraph that encodes \(\sigma\)-covering relation between edges in \(X\). \(\mathrm{M}\)-graphs are Markov graphs up to isomorphism. We obtain several sufficient conditions for the disjoint union of \(\mathrm{M}\)-graphs to be an \(\mathrm{M}\)-graph and prove that each weak component of \(\mathrm{M}\)-graph is an \(\mathrm{M}\)-graph itself.