On disjoint union of \(\mathrm{M}\)-graphs
Given a pair \((X,\sigma)\) consisting of a finite tree \(X\) and its vertex self-map \(\sigma\) one can construct the corresponding Markov graph \(\Gamma(X,\sigma)\) which is a digraph that encodes \(\sigma\)-covering relation between edges in \(X\). \(\mathrm{M}\)-graphs are Markov graphs up to is...
Збережено в:
Дата: | 2018 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/426 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозиторії
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-426 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-4262018-04-26T02:43:18Z On disjoint union of \(\mathrm{M}\)-graphs Kozerenko, Sergiy tree maps, Markov graphs, Sharkovsky's theorem 05C20, 37E25, 37E15 Given a pair \((X,\sigma)\) consisting of a finite tree \(X\) and its vertex self-map \(\sigma\) one can construct the corresponding Markov graph \(\Gamma(X,\sigma)\) which is a digraph that encodes \(\sigma\)-covering relation between edges in \(X\). \(\mathrm{M}\)-graphs are Markov graphs up to isomorphism. We obtain several sufficient conditions for the disjoint union of \(\mathrm{M}\)-graphs to be an \(\mathrm{M}\)-graph and prove that each weak component of \(\mathrm{M}\)-graph is an \(\mathrm{M}\)-graph itself. Lugansk National Taras Shevchenko University 2018-01-24 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/426 Algebra and Discrete Mathematics; Vol 24, No 2 (2017) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/426/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/426/182 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/426/183 Copyright (c) 2018 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
collection |
OJS |
language |
English |
topic |
tree maps Markov graphs Sharkovsky's theorem 05C20 37E25 37E15 |
spellingShingle |
tree maps Markov graphs Sharkovsky's theorem 05C20 37E25 37E15 Kozerenko, Sergiy On disjoint union of \(\mathrm{M}\)-graphs |
topic_facet |
tree maps Markov graphs Sharkovsky's theorem 05C20 37E25 37E15 |
format |
Article |
author |
Kozerenko, Sergiy |
author_facet |
Kozerenko, Sergiy |
author_sort |
Kozerenko, Sergiy |
title |
On disjoint union of \(\mathrm{M}\)-graphs |
title_short |
On disjoint union of \(\mathrm{M}\)-graphs |
title_full |
On disjoint union of \(\mathrm{M}\)-graphs |
title_fullStr |
On disjoint union of \(\mathrm{M}\)-graphs |
title_full_unstemmed |
On disjoint union of \(\mathrm{M}\)-graphs |
title_sort |
on disjoint union of \(\mathrm{m}\)-graphs |
description |
Given a pair \((X,\sigma)\) consisting of a finite tree \(X\) and its vertex self-map \(\sigma\) one can construct the corresponding Markov graph \(\Gamma(X,\sigma)\) which is a digraph that encodes \(\sigma\)-covering relation between edges in \(X\). \(\mathrm{M}\)-graphs are Markov graphs up to isomorphism. We obtain several sufficient conditions for the disjoint union of \(\mathrm{M}\)-graphs to be an \(\mathrm{M}\)-graph and prove that each weak component of \(\mathrm{M}\)-graph is an \(\mathrm{M}\)-graph itself. |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2018 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/426 |
work_keys_str_mv |
AT kozerenkosergiy ondisjointunionofmathrmmgraphs |
first_indexed |
2024-04-12T06:25:43Z |
last_indexed |
2024-04-12T06:25:43Z |
_version_ |
1796109209068109824 |