Attached primes and annihilators of top local cohomology modules defined by a pair of ideals

Assume that \(R\) is  a complete Noetherian local ring and \(M\) is a non-zero finitely generated \(R\)-module of dimension \(n=\dim(M)\geq 1\). It is shown that any non-empty  subset \(T\) of \(\mathrm{Assh}(M)\) can be expressed as the set of attached primes of the top local cohomology modules \(H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2020
Hauptverfasser: Karimi, S., Payrovi, Sh.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2020
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/429
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:Assume that \(R\) is  a complete Noetherian local ring and \(M\) is a non-zero finitely generated \(R\)-module of dimension \(n=\dim(M)\geq 1\). It is shown that any non-empty  subset \(T\) of \(\mathrm{Assh}(M)\) can be expressed as the set of attached primes of the top local cohomology modules \(H_{I,J}^n(M)\) for some proper ideals \(I,J\) of \(R\). Moreover, for  ideals \(I, J=\bigcap_ {\mathfrak p\in \mathrm{Att}_R(H_{I}^n(M))}\mathfrak p\) and \(J'\)  of \(R\) it is proved that \(T=\mathrm{Att}_R(H_{I,J}^n(M))=\mathrm{Att}_R(H_{I,J'}^n(M))\) if and only if \(J'\subseteq J\). Let  \(H_{I,J}^n(M)\neq 0\). It is shown that there exists \(Q\in \mathrm{Supp}(M)\) such that \(\dim(R/Q)=1\) and \(H_Q^n(R/{\mathfrak p})\neq 0\), for each \(\mathfrak p \in \mathrm{Att}_R(H_{I,J}^n(M))\). In addition, we prove that if \(I\) and \(J\) are two proper ideals of a Noetherian local ring \(R\), then  \(\mathrm{Ann}_R(H_{I,J}^{n}(M))=\mathrm{Ann}_R(M/{T_R(I,J,M)})\), where \(T_R(I,J,M)\) is the largest submodule of \(M\) with \(\mathrm{cd}(I,J,T_R(I,J,M))<\mathrm{cd}(I,J,M)\), here \(\mathrm{cd}(I,J,M)\) is the cohomological dimension of \(M\) with respect to \(I\) and \(J\). This result  is a generalization of [1, Theorem 2.3] and [2, Theorem 2.6].