The \(R_{\infty}\) property for Houghton's groups
We study twisted conjugacy classes of a family of groups which are called Houghton's groups \(\mathcal{H}_n\) (\(n \in\mathbb{N}\)), the group of translations of \(n\) rays of discrete points at infinity. We prove that the Houghton's groups \(\mathcal{H}_n\) have the \(R_\infty\) property...
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2017
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/466 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-466 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-4662017-07-02T21:58:40Z The \(R_{\infty}\) property for Houghton's groups Jo, Jang Hyun Lee, Jong Bum Lee, Sang Rae Houghton's group, \(R_\infty\) property, Reidemeister number 20E45, 20E36, 55M20 We study twisted conjugacy classes of a family of groups which are called Houghton's groups \(\mathcal{H}_n\) (\(n \in\mathbb{N}\)), the group of translations of \(n\) rays of discrete points at infinity. We prove that the Houghton's groups \(\mathcal{H}_n\) have the \(R_\infty\) property for all \(n\in \mathbb{N}\). Lugansk National Taras Shevchenko University 2017-07-03 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/466 Algebra and Discrete Mathematics; Vol 23, No 2 (2017) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/466/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/466/201 Copyright (c) 2017 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
collection |
OJS |
language |
English |
topic |
Houghton's group \(R_\infty\) property Reidemeister number 20E45 20E36 55M20 |
spellingShingle |
Houghton's group \(R_\infty\) property Reidemeister number 20E45 20E36 55M20 Jo, Jang Hyun Lee, Jong Bum Lee, Sang Rae The \(R_{\infty}\) property for Houghton's groups |
topic_facet |
Houghton's group \(R_\infty\) property Reidemeister number 20E45 20E36 55M20 |
format |
Article |
author |
Jo, Jang Hyun Lee, Jong Bum Lee, Sang Rae |
author_facet |
Jo, Jang Hyun Lee, Jong Bum Lee, Sang Rae |
author_sort |
Jo, Jang Hyun |
title |
The \(R_{\infty}\) property for Houghton's groups |
title_short |
The \(R_{\infty}\) property for Houghton's groups |
title_full |
The \(R_{\infty}\) property for Houghton's groups |
title_fullStr |
The \(R_{\infty}\) property for Houghton's groups |
title_full_unstemmed |
The \(R_{\infty}\) property for Houghton's groups |
title_sort |
\(r_{\infty}\) property for houghton's groups |
description |
We study twisted conjugacy classes of a family of groups which are called Houghton's groups \(\mathcal{H}_n\) (\(n \in\mathbb{N}\)), the group of translations of \(n\) rays of discrete points at infinity. We prove that the Houghton's groups \(\mathcal{H}_n\) have the \(R_\infty\) property for all \(n\in \mathbb{N}\). |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2017 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/466 |
work_keys_str_mv |
AT jojanghyun therinftypropertyforhoughtonsgroups AT leejongbum therinftypropertyforhoughtonsgroups AT leesangrae therinftypropertyforhoughtonsgroups AT jojanghyun rinftypropertyforhoughtonsgroups AT leejongbum rinftypropertyforhoughtonsgroups AT leesangrae rinftypropertyforhoughtonsgroups |
first_indexed |
2024-04-12T06:25:44Z |
last_indexed |
2024-04-12T06:25:44Z |
_version_ |
1796109209176113152 |