Modules with minimax Cousin cohomologies
Let \(R\) be a commutative Noetherian ring with non-zero identity and let \(X\) be an arbitrary \(R\)-module. In this paper, we show that if all the cohomology modules of the Cousin complex for \(X\) are minimax, then the following hold for any prime ideal \(\mathfrak{p}\) of \(R\) and for every in...
Saved in:
| Date: | 2020 |
|---|---|
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Lugansk National Taras Shevchenko University
2020
|
| Subjects: | |
| Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/528 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| Summary: | Let \(R\) be a commutative Noetherian ring with non-zero identity and let \(X\) be an arbitrary \(R\)-module. In this paper, we show that if all the cohomology modules of the Cousin complex for \(X\) are minimax, then the following hold for any prime ideal \(\mathfrak{p}\) of \(R\) and for every integer \(n\) less than \(X\), the height of \(\mathfrak{p}\):(i) the \(n\)th Bass number of \(X\) with respect to \(\mathfrak{p}\) is finite;(ii) the \(n\)th local cohomology module of \(X_\mathfrak{p}\) with respect to \(\mathfrak{p}R_\mathfrak{p}\) is Artinian. |
|---|