Spectral properties of partial automorphisms of a binary rooted tree

We study asymptotics of the spectral measure of a randomly chosen partial automorphism of a rooted tree.  To every partial automorphism \(x\) we assign its action matrix \(A_x\). It is shown that the uniform distribution  on eigenvalues of \(A_x\) converges weakly in probability to \(\delta_0\) as \...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автор: Kochubinska, Eugenia
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2019
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/532
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-532
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-5322019-01-24T08:21:31Z Spectral properties of partial automorphisms of a binary rooted tree Kochubinska, Eugenia partial automorphism, semigroup, eigenvalues, random matrix, delta measure 20M18, 20M20,05C05 We study asymptotics of the spectral measure of a randomly chosen partial automorphism of a rooted tree.  To every partial automorphism \(x\) we assign its action matrix \(A_x\). It is shown that the uniform distribution  on eigenvalues of \(A_x\) converges weakly in probability to \(\delta_0\) as \(n \to \infty\), where \(\delta_0\) is the delta measure concentrated at \(0\). Lugansk National Taras Shevchenko University 2019-01-24 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/532 Algebra and Discrete Mathematics; Vol 26, No 2 (2018) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/532/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/532/272 Copyright (c) 2019 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic partial automorphism
semigroup
eigenvalues
random matrix
delta measure
20M18
20M20,05C05
spellingShingle partial automorphism
semigroup
eigenvalues
random matrix
delta measure
20M18
20M20,05C05
Kochubinska, Eugenia
Spectral properties of partial automorphisms of a binary rooted tree
topic_facet partial automorphism
semigroup
eigenvalues
random matrix
delta measure
20M18
20M20,05C05
format Article
author Kochubinska, Eugenia
author_facet Kochubinska, Eugenia
author_sort Kochubinska, Eugenia
title Spectral properties of partial automorphisms of a binary rooted tree
title_short Spectral properties of partial automorphisms of a binary rooted tree
title_full Spectral properties of partial automorphisms of a binary rooted tree
title_fullStr Spectral properties of partial automorphisms of a binary rooted tree
title_full_unstemmed Spectral properties of partial automorphisms of a binary rooted tree
title_sort spectral properties of partial automorphisms of a binary rooted tree
description We study asymptotics of the spectral measure of a randomly chosen partial automorphism of a rooted tree.  To every partial automorphism \(x\) we assign its action matrix \(A_x\). It is shown that the uniform distribution  on eigenvalues of \(A_x\) converges weakly in probability to \(\delta_0\) as \(n \to \infty\), where \(\delta_0\) is the delta measure concentrated at \(0\).
publisher Lugansk National Taras Shevchenko University
publishDate 2019
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/532
work_keys_str_mv AT kochubinskaeugenia spectralpropertiesofpartialautomorphismsofabinaryrootedtree
first_indexed 2024-04-12T06:26:33Z
last_indexed 2024-04-12T06:26:33Z
_version_ 1796109220253270016