2025-02-22T10:09:59-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22oai%3Aojs.admjournal.luguniv.edu.ua%3Aarticle-57%22&qt=morelikethis&rows=5
2025-02-22T10:09:59-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22oai%3Aojs.admjournal.luguniv.edu.ua%3Aarticle-57%22&qt=morelikethis&rows=5
2025-02-22T10:09:59-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T10:09:59-05:00 DEBUG: Deserialized SOLR response
A morphic ring of neat range one
We show that a commutative ring \(R\) has neat range one if and only if every unit modulo principal ideal of a ring lifts to a neat element. We also show that a commutative morphic ring \(R\) has a neat range one if and only if for any elements \(a, b \in R\) such that \(aR=bR\) there exist neat ele...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Lugansk National Taras Shevchenko University
2016
|
Subjects: | |
Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/57 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:ojs.admjournal.luguniv.edu.ua:article-57 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-572016-01-12T07:40:37Z A morphic ring of neat range one Pihura, Oksana Zabavsky, Bohdan Bezout ring, neat ring, clear ring, elementary divisor ring, stable range one, neat range one 13F99 We show that a commutative ring \(R\) has neat range one if and only if every unit modulo principal ideal of a ring lifts to a neat element. We also show that a commutative morphic ring \(R\) has a neat range one if and only if for any elements \(a, b \in R\) such that \(aR=bR\) there exist neat elements \(s, t \in R\) such that \(bs=c\), \(ct=b\). Examples of morphic rings of neat range one are given. Lugansk National Taras Shevchenko University 2016-01-12 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/57 Algebra and Discrete Mathematics; Vol 20, No 2 (2015) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/57/pdf Copyright (c) 2016 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
collection |
OJS |
language |
English |
topic |
Bezout ring neat ring clear ring elementary divisor ring stable range one neat range one 13F99 |
spellingShingle |
Bezout ring neat ring clear ring elementary divisor ring stable range one neat range one 13F99 Pihura, Oksana Zabavsky, Bohdan A morphic ring of neat range one |
topic_facet |
Bezout ring neat ring clear ring elementary divisor ring stable range one neat range one 13F99 |
format |
Article |
author |
Pihura, Oksana Zabavsky, Bohdan |
author_facet |
Pihura, Oksana Zabavsky, Bohdan |
author_sort |
Pihura, Oksana |
title |
A morphic ring of neat range one |
title_short |
A morphic ring of neat range one |
title_full |
A morphic ring of neat range one |
title_fullStr |
A morphic ring of neat range one |
title_full_unstemmed |
A morphic ring of neat range one |
title_sort |
morphic ring of neat range one |
description |
We show that a commutative ring \(R\) has neat range one if and only if every unit modulo principal ideal of a ring lifts to a neat element. We also show that a commutative morphic ring \(R\) has a neat range one if and only if for any elements \(a, b \in R\) such that \(aR=bR\) there exist neat elements \(s, t \in R\) such that \(bs=c\), \(ct=b\). Examples of morphic rings of neat range one are given. |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2016 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/57 |
work_keys_str_mv |
AT pihuraoksana amorphicringofneatrangeone AT zabavskybohdan amorphicringofneatrangeone AT pihuraoksana morphicringofneatrangeone AT zabavskybohdan morphicringofneatrangeone |
first_indexed |
2024-04-12T06:26:12Z |
last_indexed |
2024-04-12T06:26:12Z |
_version_ |
1796109220464033792 |