A morphic ring of neat range one
We show that a commutative ring \(R\) has neat range one if and only if every unit modulo principal ideal of a ring lifts to a neat element. We also show that a commutative morphic ring \(R\) has a neat range one if and only if for any elements \(a, b \in R\) such that \(aR=bR\) there exist neat ele...
Gespeichert in:
Datum: | 2016 |
---|---|
Hauptverfasser: | Pihura, Oksana, Zabavsky, Bohdan |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Lugansk National Taras Shevchenko University
2016
|
Schlagworte: | |
Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/57 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsÄhnliche Einträge
-
Comaximal factorization in a commutative Bezout ring
von: Zabavsky, B. V., et al.
Veröffentlicht: (2020) -
Type conditions of stable range for identification of qualitative generalized classes of rings
von: Zabavsky, Bohdan Volodymyrovych
Veröffentlicht: (2018) -
Quasi-Euclidean duo rings with elementary reduction of matrices
von: Romaniv, Oleh, et al.
Veröffentlicht: (2016) -
Diagonalizability theorems for matrices over rings with finite stable range
von: Zabavsky, Bogdan
Veröffentlicht: (2018) -
Elementary reduction of matrices over rings of almost stable range 1
von: Zabavsky, B., et al.
Veröffentlicht: (2020)