Some results on the main supergraph of finite groups

Let \(G\) be a finite group. The main supergraph \(\mathcal{S}(G)\) is a graph with vertex set \(G\) in which two vertices \(x\) and \(y\) are adjacent if and only if \(o(x) \mid o(y)\) or \(o(y)\mid o(x)\). In this paper, we will show that \(G\cong \mathrm{PSL}(2,p)\) or \(\mathrm{PGL}(2,p)\) if an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2021
Hauptverfasser: Asboei, A. K., Salehi, S. S.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2021
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/584
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-584
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-5842021-01-29T09:38:49Z Some results on the main supergraph of finite groups Asboei, A. K. Salehi, S. S. graph, main supergraph, finite groups, Thompson's problem 20D08; 05C25 Let \(G\) be a finite group. The main supergraph \(\mathcal{S}(G)\) is a graph with vertex set \(G\) in which two vertices \(x\) and \(y\) are adjacent if and only if \(o(x) \mid o(y)\) or \(o(y)\mid o(x)\). In this paper, we will show that \(G\cong \mathrm{PSL}(2,p)\) or \(\mathrm{PGL}(2,p)\) if and only if \(\mathcal{S}(G)\cong \mathcal{S}(\mathrm{PSL}(2,p))\) or \(\mathcal{S}(\mathrm{PGL}(2,p))\), respectively. Also, we will show that if \(M\) is a sporadic simple group, then \(G\cong M\) if only if \(\mathcal{S}(G)\cong \mathcal{S}(M)\). Lugansk National Taras Shevchenko University 2021-01-29 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/584 10.12958/adm584 Algebra and Discrete Mathematics; Vol 30, No 2 (2020) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/584/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/584/794 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/584/812 Copyright (c) 2021 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2021-01-29T09:38:49Z
collection OJS
language English
topic graph
main supergraph
finite groups
Thompson's problem
20D08
05C25
spellingShingle graph
main supergraph
finite groups
Thompson's problem
20D08
05C25
Asboei, A. K.
Salehi, S. S.
Some results on the main supergraph of finite groups
topic_facet graph
main supergraph
finite groups
Thompson's problem
20D08
05C25
format Article
author Asboei, A. K.
Salehi, S. S.
author_facet Asboei, A. K.
Salehi, S. S.
author_sort Asboei, A. K.
title Some results on the main supergraph of finite groups
title_short Some results on the main supergraph of finite groups
title_full Some results on the main supergraph of finite groups
title_fullStr Some results on the main supergraph of finite groups
title_full_unstemmed Some results on the main supergraph of finite groups
title_sort some results on the main supergraph of finite groups
description Let \(G\) be a finite group. The main supergraph \(\mathcal{S}(G)\) is a graph with vertex set \(G\) in which two vertices \(x\) and \(y\) are adjacent if and only if \(o(x) \mid o(y)\) or \(o(y)\mid o(x)\). In this paper, we will show that \(G\cong \mathrm{PSL}(2,p)\) or \(\mathrm{PGL}(2,p)\) if and only if \(\mathcal{S}(G)\cong \mathcal{S}(\mathrm{PSL}(2,p))\) or \(\mathcal{S}(\mathrm{PGL}(2,p))\), respectively. Also, we will show that if \(M\) is a sporadic simple group, then \(G\cong M\) if only if \(\mathcal{S}(G)\cong \mathcal{S}(M)\).
publisher Lugansk National Taras Shevchenko University
publishDate 2021
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/584
work_keys_str_mv AT asboeiak someresultsonthemainsupergraphoffinitegroups
AT salehiss someresultsonthemainsupergraphoffinitegroups
first_indexed 2025-07-17T10:32:02Z
last_indexed 2025-07-17T10:32:02Z
_version_ 1837889825423753216