Amply (weakly) Goldie-Rad-supplemented modules

Let \(R\) be a ring and \(M\) be a right \(R\)-module. We say a submodule \(S\) of \(M\) is a \textit{(weak) Goldie-Rad-supplement} of a submodule \(N\) in \(M\), if \(M=N+S\), \((N\cap S \leq Rad(M))\) \(N\cap S\leq Rad(S)\) and \(N\beta^{**} S\), and  \(M\) is called amply (weakly) Goldie-Rad-supp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2016
1. Verfasser: Takıl Mutlu, Figen
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2016
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/59
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:Let \(R\) be a ring and \(M\) be a right \(R\)-module. We say a submodule \(S\) of \(M\) is a \textit{(weak) Goldie-Rad-supplement} of a submodule \(N\) in \(M\), if \(M=N+S\), \((N\cap S \leq Rad(M))\) \(N\cap S\leq Rad(S)\) and \(N\beta^{**} S\), and  \(M\) is called amply (weakly) Goldie-Rad-supplemented if every submodule of \(M\) has ample (weak) Goldie-Rad-supplements in \(M\). In this paper we study various properties of such modules. We show that every distributive projective weakly Goldie-Rad-Supplemented module is amply weakly Goldie-Rad-Supplemented. We also show that if \(M\) is amply (weakly) Goldie-Rad-supplemented and satisfies DCC on (weak) Goldie-Rad-supplement submodules and on small submodules, then \(M\) is Artinian.