Amply (weakly) Goldie-Rad-supplemented modules

Let \(R\) be a ring and \(M\) be a right \(R\)-module. We say a submodule \(S\) of \(M\) is a \textit{(weak) Goldie-Rad-supplement} of a submodule \(N\) in \(M\), if \(M=N+S\), \((N\cap S \leq Rad(M))\) \(N\cap S\leq Rad(S)\) and \(N\beta^{**} S\), and  \(M\) is called amply (weakly) Goldie-Rad-supp...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автор: Takıl Mutlu, Figen
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2016
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/59
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-59
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-592016-11-15T13:03:03Z Amply (weakly) Goldie-Rad-supplemented modules Takıl Mutlu, Figen Supplement submodule, Goldie-Rad-Supplement submodule, amply Goldie-Rad-Supplemented module 16D10, 16D40, 16D70 Let \(R\) be a ring and \(M\) be a right \(R\)-module. We say a submodule \(S\) of \(M\) is a \textit{(weak) Goldie-Rad-supplement} of a submodule \(N\) in \(M\), if \(M=N+S\), \((N\cap S \leq Rad(M))\) \(N\cap S\leq Rad(S)\) and \(N\beta^{**} S\), and  \(M\) is called amply (weakly) Goldie-Rad-supplemented if every submodule of \(M\) has ample (weak) Goldie-Rad-supplements in \(M\). In this paper we study various properties of such modules. We show that every distributive projective weakly Goldie-Rad-Supplemented module is amply weakly Goldie-Rad-Supplemented. We also show that if \(M\) is amply (weakly) Goldie-Rad-supplemented and satisfies DCC on (weak) Goldie-Rad-supplement submodules and on small submodules, then \(M\) is Artinian. Lugansk National Taras Shevchenko University This study was supported by Anadolu University Scientific Research Projects Commission under the grant no:1505F225. 2016-11-15 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/59 Algebra and Discrete Mathematics; Vol 22, No 1 (2016) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/59/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/59/129 Copyright (c) 2016 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2016-11-15T13:03:03Z
collection OJS
language English
topic Supplement submodule
Goldie-Rad-Supplement submodule
amply Goldie-Rad-Supplemented module
16D10
16D40
16D70
spellingShingle Supplement submodule
Goldie-Rad-Supplement submodule
amply Goldie-Rad-Supplemented module
16D10
16D40
16D70
Takıl Mutlu, Figen
Amply (weakly) Goldie-Rad-supplemented modules
topic_facet Supplement submodule
Goldie-Rad-Supplement submodule
amply Goldie-Rad-Supplemented module
16D10
16D40
16D70
format Article
author Takıl Mutlu, Figen
author_facet Takıl Mutlu, Figen
author_sort Takıl Mutlu, Figen
title Amply (weakly) Goldie-Rad-supplemented modules
title_short Amply (weakly) Goldie-Rad-supplemented modules
title_full Amply (weakly) Goldie-Rad-supplemented modules
title_fullStr Amply (weakly) Goldie-Rad-supplemented modules
title_full_unstemmed Amply (weakly) Goldie-Rad-supplemented modules
title_sort amply (weakly) goldie-rad-supplemented modules
description Let \(R\) be a ring and \(M\) be a right \(R\)-module. We say a submodule \(S\) of \(M\) is a \textit{(weak) Goldie-Rad-supplement} of a submodule \(N\) in \(M\), if \(M=N+S\), \((N\cap S \leq Rad(M))\) \(N\cap S\leq Rad(S)\) and \(N\beta^{**} S\), and  \(M\) is called amply (weakly) Goldie-Rad-supplemented if every submodule of \(M\) has ample (weak) Goldie-Rad-supplements in \(M\). In this paper we study various properties of such modules. We show that every distributive projective weakly Goldie-Rad-Supplemented module is amply weakly Goldie-Rad-Supplemented. We also show that if \(M\) is amply (weakly) Goldie-Rad-supplemented and satisfies DCC on (weak) Goldie-Rad-supplement submodules and on small submodules, then \(M\) is Artinian.
publisher Lugansk National Taras Shevchenko University
publishDate 2016
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/59
work_keys_str_mv AT takılmutlufigen amplyweaklygoldieradsupplementedmodules
first_indexed 2025-07-17T10:31:20Z
last_indexed 2025-07-17T10:31:20Z
_version_ 1837890136494309376