Commutator subgroups of the power subgroups of generalized Hecke groups

Let \(p\), \(q\geq 2\) be relatively prime integers and let \(H_{p,q}\) be the generalized Hecke group associated to \(p\) and \(q\). The generalized Hecke group \(H_{p,q}\) is generated by \(X(z)=-(z-\lambda _{p})^{-1}\) and \(Y(z)=-(z+\lambda_{q})^{-1}\) where \(\lambda _{p}=2\cos \frac{\pi }{p}\)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2019
Hauptverfasser: Koruoğlu, Özden, Meral, Taner, Sahin, Recep
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2019
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/597
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:Let \(p\), \(q\geq 2\) be relatively prime integers and let \(H_{p,q}\) be the generalized Hecke group associated to \(p\) and \(q\). The generalized Hecke group \(H_{p,q}\) is generated by \(X(z)=-(z-\lambda _{p})^{-1}\) and \(Y(z)=-(z+\lambda_{q})^{-1}\) where \(\lambda _{p}=2\cos \frac{\pi }{p}\) and \(\lambda_{q}=2\cos \frac{\pi }{q}\). In this paper, for positive integer \(m\), we study the commutator subgroups \((H_{p,q}^{m})'\) of the power subgroups \(H_{p,q}^{m}\) of generalized Hecke groups \(H_{p,q}\). We give an application related with the derived series for all triangle groups of the form \((0;p,q,n)\), for distinct primes \(p\), \(q\) and for positive integer \(n\).